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FAKULTÄT FÜR MATHEMATIK

Bachelorarbeit

Tropical Hypersurfaces of

Laurent Polynomials

Jonathan Pirnay

Betreuer: Prof. Dr. Klaus Künnemann, Dr. Philipp Jell
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Deutsche Zusammenfassung

Das Ziel dieser Bachelorarbeit ist ein grundsätzliches Verständnis von tropischen

Hyperflächen, die von Laurentpolynomen in mehreren Unbekannten mit Koef-

fizienten aus einem bewerteten Körper erzeugt werden. Wir betrachten die Theorie

von bewerteten Körpern und Initialformen, sowie Tropikalisierungen von Laurent-

polynomen, Varietäten und Monomabbildungen im algebraischen Torus. Dabei

setzen wir kein Hintergrundwissen der algebraischen Geometrie voraus.

Das Hauptresultat dieser Arbeit besteht im Beweis des Satzes von Kapranov, der

eine erstaunliche Brücke zwischen der klassischen Varietät eines Laurentpolynoms

und dessen tropischer Hyperfläche schlägt. Unter anderem besagt er, dass für

einen algebraisch abgeschlossenen, bewerteten Körper K und ein Laurentpolynom

f mit Koeffizienten in K die tropische Hyperfläche trop(V (f)) identisch ist mit

dem euklidischen Abschluss der Menge der punktweisen Bewertungen der klassis-

chen Varietät V (f).

Das Material dieser Arbeit entstammt größtenteils [MS15], insbesondere folgt der

Aufbau Teilen der Kapitel §2.1, §2.2, §2.4, §2.6, §3.1 aus [MS15] mit einigen

Änderungen, Zusätzen und gelegentlich detaillierteren Beweisen. Einige Resultate

wie beispielsweise Proposition 2.7 und das Beispiel in Bemerkung 2.13 entstammen

Übungsaufgaben aus dem Buch. Für die Theorie von Erweiterungen von Bewer-

tungen in Kapitel 2 werden wir teilweise auf zahlentheoretische Ergebnisse wie

in [Ne99] verweisen oder einen verallgemeinerten Bewertungsbegriff wie in [EP05]

einführen.
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Introduction

The study of tropical geometry is the study of geometry over the tropical semiring

(R∪{∞},⊕,�) in which addition is given by taking the minimum a⊕b = min{a, b}
and multiplication by taking the usual sum a � b = a + b. Indeed this semiring

satisfies all field axioms except for existence of additive inverses – the neutral

element of addition is ∞ which represents infinity, and 0 is the neutral element of

the multiplicative group. In the tropical semiring, a polynomial with coefficients

in R becomes a piecewise-linear concave function with integer coefficients. For

example the tropical version of f(X) = X3 + 2X2 + 4X + 10 is given by

trop(f)(X) = X3 ⊕ 2�X2 ⊕ 4�X ⊕ 10 = min{3X, 2X + 2, X + 4, 10}

whose graph is sketched in Figure 1.1. In the case of trop(f), the two points in

the graph for X = 2, X = 6 indicate where trop(f) is non-linear and are called

roots of the polynomial.

The basic objects of study in algebraic geometry are algebraic varieties which

are defined by zero sets of multivariate polynomials. The corresponding tropical

object is the tropical variety: For a single tropical polynomial trop(f) it is defined

as exactly the locus in Rn where the piecewise linear function trop(f) fails to be

linear.

The aim of this bachelor thesis is to present the basic conception of tropical hy-

persurfaces of multivariate Laurent polynomials over a valued field, as well as all

the prerequisites needed. Without requiring background in algebraic geometry, we

will study valuations, initial forms and tropicalizations of Laurent polynomials, of

varieties and of monomial maps in the algebraic torus. The main result in this

1
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Figure 1.1: Graph of trop(f) (indicated by bold line).

thesis is Kapranov’s Theorem which draws an astonishing connection between the

classical variety defined by a Laurent polynomial and its tropical hypersurface.

The material in this thesis is taken largely from [MS15], specifically it follows

parts of §2.1, §2.2, §2.4, §2.6, §3.1 in [MS15] with some alterations, additions

and of course more detailed proofs. Some proofs of minor results as for example

Proposition 2.7 and the example in Remark 2.13 stem from exercises in the book.

For some theory in Chapter 2 about valuations we will refer to number theoretical

results as in [Ne99] or to a more generalized theory of valued fields as in [EP05].

Chapter 2 discusses the theory of valued fields. We define valuations from the unit

group of a field onto an additive subgroup of R and look at basic properties of

such a map. As algebraically closed, valued fields play the major role throughout

this thesis, we focus on how valuations behave on algebraically closed fields. The

main results of Chapter 2 are that an arbitrarily valued field can be embedded into

an algebraically closed field which extends the valuation (which we will not prove

rigorously though), and that in the algebraically closed setting the valuation map

always splits, which is important for the definition of initial forms in Chapter 4.

We also briefly look at important examples of valuations as on the field of Puiseux

series or the p-adic valuation. Main source for Chapter 2 is [MS15, §2.1].

In Chapter 3 we outline fundamental objects from algebraic geometry, such as the

n-dimensional algebraic torus, the concept of varieties and the Zariski topology.

We also introduce monomial maps on the algebraic torus and the maps they induce
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on the corresponding rings of Laurent polynomials. Chapter 3 consists mainly of

various parts of [MS15, §2.2].

Chapter 4 consists of important preliminary work for Kapranov’s Theorem. By

replacing the coefficients with their valuations and performing all additions and

multiplications in the tropical semiring, we can pass from a Laurent polynomial

over a valued field to its tropicalization – a piecewise linear function from Rn to R.

We define initial forms which are special multivariate polynomials with coefficients

in the residue class field of a valued field (with respect to its valuation). Initial

forms play a distinguished role in this thesis, as they originate from tropicalizations

of Laurent polynomials and carry useful information about the roots of the tropical

polynomials they come from. Hence Chapter 4 focuses on understanding the basic

structure of initial forms and the ideals they generate. At the end of Chapter 4

we briefly talk about the notion of a tropical basis and tropicalize monomial maps

on the algebraic torus which provides a useful tool for the proof of Kapranov’s

Theorem.

The material in this chapter is a mixture of [MS15, §2.4] and [MS15, §2.6]; some

results will be omitted, some proofs necessarily altered. In general everything will

be proved directly for the Laurent polynomial ring and we will try to fill arguments

with much detail.

Chapter 5 follows [MS15, §3.1] and is dedicated fully to a detailed proof of Kapra-

nov’s Theorem, the main result of this thesis. We define the tropical hypersurface

trop(V (f)) of a Laurent polynomial f as the set of all elements w ∈ Rn where

the minimum in the corresponding tropicalization trop(f)(w) is achieved at least

twice. The main statement of Kapranov’s Theorem is then that over an alge-

braically closed, valued field trop(V (f)) is the same as if one would first compute

pointwise the valuation of the classical hypersurface V (f) given by f and after-

wards take the Euclidean closure of the resulting set.





2

Fields With Valuations

Definition 2.1. A valued field is a pair (K, val) of a field K and a valuation map

val : K → R ∪ {∞} satisfying the following properties for all a, b ∈ K:

i.) val(a) =∞ ⇐⇒ a = 0

ii.) val(ab) = val(a) + val(b)

iii.) val(a+ b) ≥ min{val(a), val(b)}

We will often just say “valued field K” for a pair (K, val). Throughout this thesis,

we will also often identify val with its restriction val : K∗ → R. Its image Γval

is an additive subgroup of R, the value group of the valued field K. There is a

trivial valuation on every field K, defined by val(a) = 0 for all a ∈ K∗. Given any

valuation val on K and λ ∈ R>0, the map (λ · val) : K → R ∪ {∞} is a valuation

as well. Thus, for any nontrivial valuation, we may always assume that 1 ∈ Γval.

We consider now the set of all field elements with nonnegative valuation, as well

as its subset of elements with positive valuation:

R := {c ∈ K | val(c) ≥ 0}, m := {c ∈ K | val(c) > 0}

The set R is a ring. It is easy to see that R \ m = R∗, in particular R is a local

ring with unique maximal ideal m. We call R the valuation ring, and k := R/m its

residue field.

5



6 2 Fields With Valuations

Remark 2.2. The notion of a valuation can be generalized by defining it as a

surjective map

val : K � Γ ∪ {∞}, (2.1)

where Γ is a totally ordered abelian group and which satisfies the same properties

as in 2.1.

Using Definition 2.1, by property ii.) we see that val(1) = 0 and thus for any

a ∈ K∗ \ R we must have a−1 ∈ R. So the valuation ring R in the sense of

Definition 2.1 is also a valuation ring of K in the sense that all a ∈ K∗ must

satisfy a ∈ R or a−1 ∈ R. Conversely, every valuation ring in K determines a

valuation on K as defined by (2.1) above. Indeed, let R be a valuation ring of

K and let Γ be the quotient group Γ := K∗/R∗. This is a totally ordered abelian

group by the well-defined relation

xR∗ ≤ yR∗ ⇐⇒ y

x
∈ R,

and the map val(x) = xR∗ ∈ Γ which sends an element x ∈ K∗ to its coset in Γ,

defines a valuation on K.

Even further, valuation rings in K correspond one-to-one to valuations on K as in

(2.1) up to an order-preserving isomorphism of the value groups. Now an ordered

abelian group Γ has rank 1 – which means that {0} is the only proper convex

subgroup – if and only if there is an order-preserving isomorphism to a nontrivial

subgroup of (R,+) with the canonical ordering induced from R.

For rigorous proofs of these statements and detailed definitions of the terms used

see [EP05, Section 2.1]. Using this generalized theory of valuations and the axiom

of choice, the following theorem can be shown. For the full theory, see [EP05,

Section 3.1, Section 3.2].

Theorem 2.3. Let (K, valK : K → R ∪ {∞}) be a valued field, and L/K an

algebraic field extension. Then there exists a valuation valL : L→ R ∪ {∞} on L

such that valL|K = valK .

Remark 2.4. In general, such extensions of valuations will not be unique, see for

example 2.14.

As we will notice in Chapter 4, a prerequesite for the definition of initial forms

is that the valuation map of a valued field K splits. We will also see later that

this always happens if K is algebraically closed. Hence Theorem 2.3 plays an

important role: If the valuation on K does not split, it is possible to extend
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the given valuation to the algebraic closure of K. The problem of extending a

valuation on K to some algebraically closed field L with K ⊆ L can also be solved

by number theoretical means:

Let 0 < q < 1 ∈ R, then val induces a non-archimedean absolute value

|·|val,q : K → R≥0, x 7→ |x|val,q := qval(x),

where we formally set q∞ = 0. We then pass to the completion L of K with respect

to |·|val,q and extend the obtained absolute value on L to an absolute value ‖·‖ on

the algebraic closure L. This is possible as absolute values on complete fields can

be extended to any algebraic extension (for a proof, see e.g. [Ne99, Chapter II.

Theorem (4.8)]). This again induces a valuation

valL : L→ R ∪ {∞}, x 7→ logq(‖x‖),

where we set logq(0) =∞, and which satisfies valL|K = val.

Lemma 2.5. Let K be valued field and a, b ∈ K. If val(a) 6= val(b), then

val(a+ b) = min{val(a), val(b)}.

Proof: Without loss of generality we may assume val(b) > val(a). As val(1) = 0,

we also have val(−1) = 0, thus val(−b) = val(b) for all b ∈ K. We then get

val(a) ≥ min{val(a+ b), val(−b)} = min{val(a+ b), val(b)},

therefore by assumption val(a) ≥ val(a+ b). But also have

val(a+ b) ≥ min{val(a), val(b)} = val(a),

and equality follows.

The next lemma leads to the result that the residue field of an algebraically closed,

valued field is again algebraically closed (see [MS15, Exercise 2.7(4)]).

Lemma 2.6. Let K be valued field. The corresponding valuation ring (R,m) is

integrally closed.

Proof: Let x ∈ K = Quot(R) satisfy the monic equation xn + an−1x
n−1 + · · ·+

a1x+ a0 = 0, for a0, . . . , an−1 ∈ R.
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Suppose x /∈ R, then (as R is valuation ring) val(x−1) > 0, i.e. x−1 ∈ m. Multi-

plying the equation by x−n yields

an−1x
−1 + · · ·+ a1x

−n+1 + a0x
−n︸ ︷︷ ︸

∈m

= −1 ∈ m,

hence val(−1) > 0, a contradiction.

The following result is a direct consequence of the previous lemma.

Proposition 2.7. Let K be valued field with corresponding valuation ring (R,m).

If K is algebraically closed, then its residue field k is algebraically closed as well.

Proof: Let f(X) =
∑n

i=0 aiX
i ∈ k[X] with coefficients ai ∈ k and appropriate

lifts ai ∈ R. We may assume that f is monic, i.e. an = 1. As K is algebraically

closed, there exists a root c ∈ K of monic polynomial g(X) =
∑n

i=0 aiX
i ∈ K[X].

By 2.6, the root c already lies in R and satisfies

f(c) =
n∑
i=0

aici =
n∑
i=0

aici = 0.

We will now take a look at two important examples of valuations.

Example 2.8. Let A be a Dedekind domain with quotient field K and p ⊆ A a

prime ideal. Let x ∈ K∗. The fractional ideal x ·A admits a unique decomposition

into product of prime ideals

x · A =
∏

q∈Spec(A)

qvq(x), with vq(x) ∈ Z and vq(x) = 0 for almost all q ∈ Spec(A).

Hence p defines a valuation val : K → Z∪{∞} given by val(x) = vp(x) for x ∈ K∗.
For A = Z, K = Q and p = (p), where p is a prime number, this is called the

p-adic valuation on the rational numbers. For example for the 2-adic valuation

get val(− 5
24

) = −3.

Example 2.9. Given a field K, the field K{{t}} of Puisex series over K is the set

of formal series of the form

f(t) =
∞∑
i=k

cit
i/n, where ci ∈ K,n ∈ N>0, k ∈ Z.
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We can also consider K{{t}} as the union

K{{t}} =
⋃
n≥1

K((t1/n)),

where K((t1/n)) is the field of formal Laurent series in the variable t1/n (note that

in a formal Laurent series, cn = 0 for all but finitely many negative indices n).

The field of Puiseux series carries a natural valuation given by taking a nonzero

element f(t) ∈ K{{t}}∗ to the lowest exponent i/n that appears in the series

expansion of f(t). Also note that K(t) is a proper subfield of K((t)) ⊆ K{{t}}.
For example g(t) = 1

t2+5t
∈ C(t) has Laurent series expansion

∞∑
n=−1

(−1)n+1

5n+2
tn, thus val(g(t)) = −1.

An important property of K{{t}} is that it is algebraically closed if K is alge-

braically closed and char(K) = 0 (for a proof see [MS15, Thm. 2.1.5]). To be

precise, in this case K{{t}} is the algebraic closure of the Laurent series field

K((t)) (for a proof see for example [Ri99, 7.1 A.(β)]).

Lemma 2.10. Let K be an algebraically closed field with a nontrivial valuation.

Then the value group Γval is a divisible, dense subgroup of R.

Proof: We first show that Γval is divisible, i.e. we have to show that for all

a ∈ Γval and n ∈ N>0 exists b ∈ Γval with n · b = a. Let val(a) ∈ Γval for

a ∈ K∗, n ≥ 1. As K is algebraically closed, there is an element b ∈ K satisfying

bn = a, hence val(b) = 1
n
val(a) and divisibility follows. In addition, as remarked

in 2.1, we may assume 1 ∈ Γval, thus Q ⊆ R which implies that Γval is dense in

R.

A crucial property of valuations of algebraically closed, valued fields is that the

surjective valuation map splits. Later this will play a key role in the definition of

initial forms.

Proposition 2.11. Let K be an algebraically closed, valued field. The surjection

val : K∗ � Γval splits, i.e. there is a group homomorphism ψ : (Γval,+) → (K∗, ·)
with val(ψ(w)) = w for all w ∈ Γval.
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Proof: As K is algebraically closed we have a1/n ∈ K for all a ∈ K and n ∈
Z \ {0}. Thus for all a ∈ K∗ we get a group homomorphism

ϕa : (Q,+)→ (K∗, ·), x 7→ ax, (2.2)

which obviously satisfies val(ϕa(x)) = x ·val(a). By Lemma 2.10, Γval is a divisible

group, so for all g ∈ Γval and n ∈ Z\{0} there exists h ∈ Γval such that nh = g. As

Γval is torsion-free as a subgroup of R, this h is unique and we denote the element
1
n
· g := h.

Thus we get a well-defined scalar multiplication

· : (Q,Γval)→ Γval,
(m
n
, g
)
7→ 1

n
· (mg),

which in turn defines on Γval the structure of a Q-vector space.

Let (wi)i∈I be a Q-basis of Γval for an appropriate index set I and recall the

canonical isomorphism

φ : Γval
∼−→
⊕
i∈I

Q,
∑
i∈I

λiwi 7→ (λi)i∈I , Q 3 λi = 0 for almost all i. (2.3)

For every i ∈ I choose ai ∈ K∗ with val(ai) = wi. For the i-th direct summand

Γi (which is isomorphic to Q), we get a group homomorphism ϕai : Γi → K∗ as

defined in (2.2). Furthermore denote by ιi the canonical inclusion ιi : Γi →
⊕

i∈I Q.

By universal property of direct sum, there is a homomorphism ψ̃ :
⊕

i∈I(Q,+)→
(K∗, ·), such that for all i ∈ I have ψ̃ ◦ ιi = ϕai , i.e. the lower triangle of diagram

(2.4) commutes.

(Γval,+)
φ
//
⊕

i∈I(Q,+)

ψ̃
��

Γi

ιi
77

ϕai
// (K∗, ·)

(2.4)

The homomorphism ψ̃ is explicitly given by

ψ̃(( λi︸︷︷︸
= 0 for almost all i

)i∈I) =
∏
i∈I

aλii .
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Then ψ := ψ̃ ◦ φ is the desired group homomorphism. Indeed, let w ∈ Γval, i.e.

w =
∑

i∈I λiwi for λi ∈ Q almost all zero. Obtain

val(ψ(w)) = val(ψ̃ ◦ φ(w)) = val
(∏
i∈I

aλii

)
=
∑
i∈I

λi · val(ai)︸ ︷︷ ︸
=wi

= w.

Remark 2.12. The advantage of the proof just given is that it is constructive

if the valuation group is finite dimensional as a Q-vector space. By means of

homological algebra, however, one can give a much shorter proof for the existence

of the splitting: We consider the exact sequence of abelian groups (thus naturally

as Z-modules)

0 −→ ker(val) −→ K∗
val−→ Γval −→ 0.

For an n-th root b of some element a ∈ ker(val) we have val(b) = 1
n
val(a) = 0, thus

ker(val) is divisible, in particular an injective Z-module and the sequence splits.

Hence we get desired homomorphism ψ : Γval → K∗ satisfying val ◦ ψ = idΓval
.

Considering the field of Puiseux series K{{t}} with its natural valuation, we have

val(K{{t}}) = Q, and we obtain a splitting ψ : Q→ K{{t}}, w 7→ tw. Reminiscent

of this map, if a splitting exists, we will use in general the notation tw to denote

the element ψ(w) ∈ K∗.

Remark 2.13. In 2.11 we needed to assume that the valued field is algebraically

closed. In general a splitting does not exist, as we will see now. The following

counterexample follows the guided exercise [MS15, Exercise 2.7(6)]:

Consider any field K and let L := K(X1, X2, . . . ) be the field of rational func-

tions in countably many variables. This can also be expressed as the union

L =
⋃
n∈N>0

K(X1, . . . , Xn). For an f(X1, . . . , Xm) =
∑k

i=1 ciX1
ui,1 · · ·Xm

ui,m ∈
K[X1, . . . , Xm] with ci ∈ K, ui,j ∈ N, we set

v(f) := min
i=1,...,k

{ m∑
j=1

ui,j
j

}

It is easy to check that this yields a valuation val : L∗ → Q, f
g
7→ v(f) − v(g)

which satisfies val(c) = 0 for all c ∈ K, as well as val(Xj) = 1
j

for all j ∈ N>0,

in particular Γval = Q. We now suppose that a splitting φ : Q → L∗ exists. Thus

there exist f, g ∈ K[X1, . . . , Xm] for some m ∈ N, such that φ(1) = f
g
. Note
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that f /∈ K, thus not a unit in K[X1, . . . , Xm]. The polynomial ring in finitely

many variables is a unique factorization domain. We may assume that f, g have no

common prime factors and that f has prime decomposition f = c ·pl11 ·p
lk
k , where c

is some unit and k > 0. Choose n > max{l1, . . . , lk}, and get h, i ∈ K[X1, . . . , Xm̃]

for some m̃ ∈ N, such that φ( 1
n
) = h

i
. Again, we may assume that h, i have no

common prime factors, and that m̃ > m. The prime factorization of f stays the

same in K[X1, . . . , Xm̃]. But then hn

in
= φ(n · 1

n
) = φ(1) = f

g
is a contradiction to

the factorization of f , as n > max{l1, . . . , lk}.

We close this chapter with an example of how to extend a p-adic valuation on Q
to a number field. Interestingly, this will give as well some incentive for the study

of tropical polynomials. It is inspired by [MS15, Example 2.1.16].

Example 2.14. Let K be any number field with ring of integers OK . Any prime

ideal p of OK determines a valuation on K as in Example 2.8. So in order to

extend the p-adic valuation for a prime p, one can naturally choose any prime

ideal p lying above p and define an extending valuation on K by

valK : K∗ → 1

ep
Z, x 7→ vp(x)

ep
,

where ep is the ramification index of p over the prime p. The restriction of valK

to Q coincides with the p-adic valuation. Here we also see that in general an

extension of a valuation is not unique.

Now consider for example the imaginary quadratic number field K := Q(
√
−29)

with ring of integers OK . The ideals 2OK , 3OK , 5OK factor into a product of

prime ideals:

2OK = p2, 3OK = q1q2, 5OK = r1r2,

where p, qi, ri are distinct prime ideals in OK . To be precise, have p = (2, 1 +
√
−29), qi = (3, 1 + (−1)i

√
−29) and ri = (5, 1 + (−1)i

√
−29). The principal ideal

αOK of the element α := 1 +
√
−29 ∈ OK decomposes into αOK = p · q2 · r2.

Thus, for an extension valK on K of the p-adic valuation we get the following

possibilities for valK(α):

p = 2 : valK(α) =
1

2

p = 3, 5 : valK(α) = 1 or 0
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We will anticipate some aspects of the following chapters. Given a polynomial

f(X) =
∑n

i=0 aiX
i ∈ F [X] with coefficients in some valued field (F, valF ), we

define the tropicalization of f as the piecewise linear, real function

trop(f)(x) = min{valF (ai) + i · x | i ∈ {0, . . . , n}}, (2.5)

and roots of trop(f) as the real points x where (2.5) fails to be linear, i.e. where

the minimum in trop(f)(x) is obtained at least twice.

Now consider the minimal polynomial f(X) = X2−2X+30 ∈ Q[X] of α as above.

For the p-adic valuation on Q, we get tropical polynomials as follows:

p = 2 : trop(f)(x) = min{2x, 1 + x, 1}, roots:
1

2

p = 3, 5 : trop(f)(x) = min{2x, x, 1}, roots: 0, 1

We see that the roots of the tropical polynomials are exactly the possible values of

valK(α). So algebraic extensions of valued fields seem to be naturally connected

to solving tropical polynomial equations.





3

Algebraic Varieties

In this short chapter we take a look at basic concepts of algebraic geometry and

start working with the main ring of interest in this thesis: the Laurent polynomial

ring in multiple variables.

Definition 3.1. Let K be an algebraically closed field.

i.) The n-dimensional affine space An
K over K is

An
K := An := {(a1, a2, . . . , an) | ai ∈ K}.

The coordinate ring of the affine space An is the polynomial ringK[X1, . . . , Xn].

The n-dimensional algebraic torus T nK over K is defined as

T nK := T n := {(a1, a2, . . . , an) | ai ∈ K∗}

The coordinate ring of the algebraic torus T n is the Laurent polynomial ring

K[X±1
1 , . . . , X±1

n ].

ii.) The affine variety V (I) defined by an ideal I ⊆ K[X1, . . . , Xn] is

V (I) := {a ∈ An | f(a) = 0 for all f ∈ I}.

Similarly we define a very affine variety V (J) in the torus for an ideal J ⊆
K[X±1

1 , . . . , X±1
n ]:

V (J) := {a ∈ T n | f(a) = 0 for all f ∈ J}.

15
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iii.) For a polynomial f ∈ K[X1, . . . , Xn] with

f(X1, . . . , Xn) =
∑

(u1,...,un)∈Nn
c(u1,...,un)X

u1
1 · · ·Xun

n ,

where the coefficients c(u1,...,un) ∈ K are almost all zero, we often just write

in a simpler form f =
∑

u∈Nn cuX
u and define the support of f as supp(f) :=

{u ∈ Nn | cu 6= 0}.
The degree of such a polynomial is deg(f) = maxu∈Nn {|u| | cu 6= 0}, where

|u| =
∑n

i=1 ui. The homogenization f̃ of f is the homogenous polynomial f̃ =∑
u∈Nn cuX

deg(f)−|u|
0 Xu ∈ K[X0, X1, . . . , Xn]. An ideal I ⊆ K[X1, . . . , Xn]

is homogenous if it has a generating set consisting of homogenous polyno-

mials. We similarly define all these terms in the Laurent polynomial ring

K[X±1
1 , . . . , X±1

n ].

Remark 3.2. Let K be a field.

i.) For R := K[X1, . . . , Xn] we can regard the Laurent polynomial ring as

the localization S−1R of R at the multiplicatively closed set S := {Xa1
1 ·

Xa2
2 · · ·Xan

n | (a1, . . . , an) ∈ Nn}. Hence K[X±1
1 , . . . , X±1

n ] inherits several

useful properties from R; it is in particular Noetherian.

ii.) Suppose K is algebraically closed. We place the Zariski topology on the

algebraic torus T n by taking the closed sets to be

{V (I) | I ideal in K[X±1
1 , . . . , X±1

n ]},

where V (I) is the very affine variety defined by I. It is easy to see that this

defines indeed a topology:

a.) Have ∅ = V (〈1〉) and T n = V (〈0〉).

b.) The Noetherianity of K[X±1
1 , . . . , X±1

n ] yields that two ideals I, J satisfy

V (I)∪V (J) = V (I ·J) = V (I∩J), as I, J are finitely generated. Indeed,

let I = 〈f1, . . . , fn〉 and J = 〈g1, . . . , gm〉. Any a ∈ V (I ∩ J) satisfies

figj(a) = 0 for all i, j. If there exists gk with gk(a) 6= 0, then figk(a) = 0

implies fi(a) = 0 for all i, and vice versa. Hence V (I)∪V (J) ⊇ V (I ∩J).

The other inclusion is clear. Thus a finite union of closed sets is closed

again.
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c.) To see that arbitrary intersections of closed sets are closed again, note

that for some index set J and ideals Ij, j ∈ J we have ∩j∈JV (Ij) =

V
(∑

j∈J Ij
)
, where

∑
j∈J

Ij =
{∑
j∈J

aj | aj ∈ Ij, aj = 0 for almost all j ∈ J
}
.

Remark 3.3. Let K be field and T := K∗, n,m ∈ N>0. A monomial map

T n → Tm is a map which is specified by m Laurent monomials in X1, . . . , Xn, i.e.

a map

φ : T n → Tm, (y1, . . . , yn) 7→ (ya111 · · · yan1n , . . . , ya1m1 · · · yanmn ), (3.1)

with aij ∈ Z for 1 ≤ i ≤ n, 1 ≤ j ≤ m. We thus see that such a monomial map can

also be represented by a matrix A := (aij)ij ∈M(n×m,Z). The m-th column of

A defines exactly the exponents of the m-th Laurent monomial. Furthermore we

have for y, z ∈ T n that φ(y · z) = φ(y) ·φ(z) (with componentwise multiplication),

so a monomial map defines a group homomorphism between algebraic tori.

Also see easily that for two monomial maps φ : T n → Tm represented by A ∈
M(n×m,Z) and ψ : Tm → T k represented by B ∈M(m×k) that the representing

matrix of ψ ◦ φ is given by A ·B.

An automorphism of the torus T n is an invertible monomial map. Hence it follows

immediately that the automorphisms of T n form a group which is canonically

isomorphic to GLn(Z).

We finally observe that a monomial map as in (3.1) induces a ring homomorphism

φ∗ : K[Z±1
1 , . . . , Z±1

m ]→ K[X±1
1 , . . . , X±1

n ] which is given by φ∗(Zi) = Xa1i
1 · · ·Xani

n .

Here a Laurent polynomial
∑

u∈Zn cuX
u is mapped to

φ∗
( ∑
u∈Zn

cuZ
u
)

=
∑
u∈Zn

cuX
Au.

If φ is an automorphism of T n, we can also write

φ∗
( ∑
u∈Zn

cuX
u
)

=
∑
u∈Zn

cA−1uX
u.

We conclude this chapter with a lemma which is needed later when discussing

tropical hypersurfaces.
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Lemma 3.4. Let K be an algebraically closed, nontrivially valued field with a

splitting Γval → K∗, w 7→ tw such that val(tw) = w. Let α1, . . . , αn ∈ k∗ and

w1, . . . , wn ∈ Γval, and consider the set

U := {y = (y1, . . . , yn) ∈ T n | val(yi) = wi, t−wiyi = αi for i = 1, . . . , n}

Then U is dense in T n with respect to the Zariski topology.

Proof: Let B 6= ∅ be open subset of T n. We need to show B ∩ U 6= ∅. We have

T n \ B = V (I) for some nontrivial ideal I. Let h ∈ I nonzero and y ∈ U with

h(y) 6= 0. Then y /∈ V (I) = T n \B, so y ∈ B. It thus suffices to show that for any

nonzero polynomial h ∈ K[X±1
1 , . . . , X±1

n ] there is a point y ∈ U with h(y) 6= 0.

Let h 6= 0 be a Laurent polynomial. For each i we choose an appropriate lift zi

in the valuation ring R with zi = αi. Then yi := twizi satisfies val(yi) = wi, as

αi 6= 0 implies val(zi) = 0. Furthermore t−wiyi = t−wi+wizi = αi.

For each coordinate yi there is an infinite number of distinct choices in K∗; sim-

ply note that Γval is dense in R by 2.10 and that ỹi := yi + twi+j also satisfies

val(ỹi) = wi and t−wi ỹi = t−wiyi + tj︸︷︷︸
=0

= αi for all j > 0.

We now show by induction on n that there is y ∈ U with h(y) 6= 0. For n = 1 we

choose y1 from the infinite number of choices with val(y1) = w1 and t−w1y1 = α1

in a way that avoids the finitely many roots of h.

Suppose n > 1 and write h =
∑

j∈Z hjX
j
n for hj ∈ K[X±1

1 , . . . , X±1
n−1]. By in-

duction hypothesis and argumentation with infinite choices as above, there is a

y′ = (y1, . . . , yn−1) ∈ (K∗)n−1 with val(yi) = wi and t−wiyi = αi with hj(y
′) 6= 0

for all j. Then again, we can choose yn with val(yn) = wn and t−wnyn = αn in a

way that avoids the finitely many roots of h(y1, . . . , yn−1) ∈ K[X±1
n ].
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Tropicalization and Initial Forms

In this chapter we introduce tropicalization of Laurent polynomials and of auto-

morphisms of the algebraic torus, as well as initial ideals in a tropical sense.

Throughout the chapter, K is always a valued field. We do not need that K is alge-

braically closed, however we again assume that a splitting φ : Γval → K∗, w 7→ tw

exists.

Definition 4.1. i.) Let f =
∑

u∈Zn cuX
u ∈ K[X±1

1 , . . . , X±1
n ]. The tropicaliza-

tion of f is the piecewise linear function trop(f) : Rn → R given by

trop(f)(w) = min{val(cu) + 〈w, u〉 | u ∈ Zn and cu 6= 0}. (4.1)

Here 〈u,w〉 denotes the standard Euclidean inner product, i.e. 〈u,w〉 =∑n
i=1 uiwi for u = (u1, . . . , un), w = (w1, . . . , wn) ∈ Rn.

Thus trop(f) is the real valued function on Rn which is obtained by replacing

each coefficient by its valuation and performing all additions and multiplica-

tions in the tropical semiring.

ii.) Fix a weight vector w ∈ Rn and let W := trop(f)(w). Then the initial form

of f with respect to w is defined as

inw(f) :=
∑

u∈supp(f),
val(cu)+〈u,w〉=W

t−val(cu)cuX
u ∈ k[X±1

1 , . . . , X±1
n ]. (4.2)

Note that if w ∈ Γnval we can also write

inw(f) =
∑
u∈Zn

t−W+〈u,w〉cuX
u. (4.3)

19
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This is indeed well-defined, as in this case −W + 〈u,w〉 ∈ Γval.

Example 4.2. i.) Consider the field of Puiseux series C{{t}} with its natural

valuation and let f = (t + t3)X1 + 3t4X2 + 3tX1X2 ∈ C{{t}}[X1, X2]. Get

trop(f)(w) = min{1 +w1, 4 +w2, 1 +w1 +w2} for w = (w1, w2) ∈ R2. Hence

for w = (1, 1) obtain inw(f) = t−1(t+ t3)X1 = X1. For w = (0, 0) get

inw(f) = X1 + 3X1X2.

ii.) The field K = Q with the p-adic valuation admits a canonical splitting

Z → Q, a 7→ pa. It is easy to see that in the residue field k every element

in Z lies in one of the distinct classes of 0, 1, . . . , p− 1. For any m
n
∈ Q with

val(m
n

) = 0 we may assume after appropriate cancelling that p - n, so there

are k, l ∈ Z with ln+ kp = 1. Thus we get a := m
n
− lm = m−lmn

n
= kpm

n
with

val(a) > 0, hence m
n

= lm ∈ k and k has exactly p elements. Thus k ∼= Z/pZ
and we can regard the initial form of a polynomial as having coefficients in

Z/pZ.

Definition 4.3. Let I be an ideal in K[X±1
1 , . . . , X±1

n ] and w ∈ Rn. We define

the initial ideal inw(I) as the ideal in k[X±1
1 , . . . , X±1

n ] which is generated by the

initial forms of elements in I, i.e.

inw(I) := 〈inw(f) | f ∈ I〉 ⊆ k[X±1
1 , . . . , X±1

n ].

Remark 4.4. Initial forms and ideals play an important role in tropical geometry,

as we will see. However, for arbitrary choices of a weight vector w, the initial form

inw(f) of a Laurent polynomial f may be a unit in k[X±1
1 , . . . , X±1

n ] and might

hence generate the whole ring. This is exactly the case when the minimum in

trop(f)(w) is achieved only once. If this happens, the initial ideal of any ideal

containing f comprises no information at all.

It is one objective of tropical geometry to study the weight vectors w ∈ Rn for

which the initial ideal is actually a proper ideal in k[X±1
1 , . . . , X±1

n ]. Kapranov’s

Theorem, our main result in this thesis, draws an astonishing connection between

those special weight vectors and very affine varieties defined by principal ideals.

We will now prove some general facts in order to better understand the structure

of initial ideals.

The following lemma shows that the sum of initial forms is again an initial form.

The idea of the proof follows [MS15, Lemma 2.4.2], however we need to assume



4 Tropicalization and Initial Forms 21

that the weight vector w lies in Γnval, because in general the claim will not be

true for any w ∈ Rn. Consider for example an arbitrarily valued field K with

Laurent polynomial ring K[X±1, Y ±1] and weight vector w = (a, b) ∈ R2, where

a ∈ Γval, b /∈ Γval. Obviously we have inw(X) = X and inw(Y ) = Y . Suppose

there is f ∈ K[X±1, Y ±1] with inw(f) = X + Y . Then there exist c, d ∈ K∗ with

val(c) + a = val(d) + b, which implies b ∈ Γval in contradiction to our assumption.

Lemma 4.5. Let w ∈ Γnval, f1, . . . , fm ∈ K[X±1
1 , . . . , X±1

n ]. Set Wi := trop(fi)(w)

and suppose g̃ :=
∑m

i=1 inw(fi) 6= 0. Then

m∑
i=1

inw(fi) = inw

( m∑
i=1

t−Wifi

)
. (4.4)

Proof: Set g :=
∑m

i=1 t
−Wifi. First note that Wi ∈ Γval for all i, so g is actually

well-defined. For i = 1, . . . ,m write fi =
∑

u∈Zn ci,uX
u with ci,u ∈ K. We thus get

g =
∑
u∈Zn

auX
u, for au =

m∑
i=1

ci,ut
−Wi

and furthermore

trop(g)(w) = min
u∈supp(g)

{val(au) + 〈w, u〉} = min
u∈supp(g)

{val
( m∑
i=1

ci,ut
−Wi

)
+ 〈w, u〉}.

Have trop(g)(w) ≥ 0, as

val(au) ≥ min
i
{val(ci,u)− trop(fi)(w)} ≥ −〈w, u〉.

Suppose that trop(g)(w) > 0. Choose u ∈ supp(g̃) and have val(au) > −〈w, u〉.
This implies for the u-th coefficient in g̃ that (consider notation of initial form as

in (4.3))

val
( m∑
i=1

ci,ut
−Wi+〈w,u〉

)
= val

(( m∑
i=1

ci,ut
−Wi
)
· t〈w,u〉

)
= val(au) + 〈w, u〉 > 0,

hence
∑m

i=1 ci,ut
−Wi+〈w,u〉 = 0 in contradiction to u ∈ supp(g̃). Note that this

argument is indifferent to au = 0.

Thus trop(g)(w) = 0. We obtain for the u-th coefficient in inw(g) (as in (4.3)) for
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any u ∈ Zn that

aut−trop(g)(w)+〈w,u〉 = aut〈w,u〉 =

(
m∑
i=1

ci,ut−Wi

)
t〈w,u〉 =

m∑
i=1

ci,ut−Wi+〈w,u〉,

which is exactly the u-th coefficient in g̃. This completes the proof.

The next proposition is a collection of some general results about initial ideals.

Note that in the third statement we will again need to assume w ∈ Γnval, however

the fourth statement holds for all w ∈ Rn again. We will see in Remark 4.8 that

this immediately implies that a single polynomial already represents a tropical

basis for its own principal ideal.

Proposition 4.6. Let f, g ∈ K[X±1
1 , . . . , X±1

n ] and let I ⊆ K[X±1
1 , . . . , X±1

n ] be

an ideal, as well as w ∈ Rn. Then the following holds:

i.) The initial ideal inw(I) admits a finite generating system

inw(I) = 〈inw(f1), . . . , inw(fm)〉, f1, . . . , fm ∈ I.

ii.) Have inw(f · g) = inw(f) · inw(g).

iii.) If w ∈ Γnval and h ∈ inw(I), then h = inw(h̃) for some h̃ ∈ I.

iv.) If Xu ∈ inw(I) for some u ∈ Zn, then Xu = inw(h) for some h ∈ I.

Proof: i.) is clear, because K[X±1
1 , . . . , X±1

n ] is Noetherian by 3.2.

For ii.) consider f =
∑

u∈Zn cuX
u and g =

∑
u∈Zn duX

u ∈ K[X±1
1 , . . . , X±1

n ], and

we may assume that f, g are nontrivial. Get

fg =
∑
v∈Zn

evX
v, for ev =

∑
u,u′∈Zn,
u+u′=v

cudu′ .

Let W1 := trop(f)(w),W2 := trop(g)(w) and we obviously have

trop(fg)(w) = min
v∈Zn
{val

( ∑
u+u′=v

cudu′
)

︸ ︷︷ ︸
≥min{val(cu)+val(du′ )}

+ 〈w, v〉︸ ︷︷ ︸
=〈w,u〉+〈w,u′〉,
for any u+u′=v

} ≥ trop(f)(w) + trop(g)(w).

In order to see equality, consider Zn with the lexicographic ordering “≥”, i.e.

u ≥ u′ if in the vector difference u − u′ the leftmost nonzero entry is ≥ 0. This
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is a total order, so we choose maximal z ∈ supp(inw(f)), z′ ∈ supp(inw(g)). For

v := z + z′ obtain

val(ev) + 〈w, v〉 = val
( ∑
u,u′∈Zn,
u+u′=v

cudu′
)

+ 〈w, v〉

≥ min
u+u′=v

{val(cu) + val(du′)}︸ ︷︷ ︸
=val(cz)+val(dz′ ),

as z∈supp(inw(f)),z′∈supp(inw(g))

+〈w, v〉 (4.5)

Let u, u′ ∈ Zn with u + u′ = v and val(cu) + val(du′) = val(cz) + val(dz′). Then

u ∈ supp(inw(f)), u′ ∈ supp(inw(g)). As u + u′ = v = z + z′, maximality of z, z′

yields 0 ≥ u− z = z′ − u′ ≥ 0, thus z = u, z′ = u′. Thus the minimum in (4.5) is

obtained only once, which implies equality by Lemma 2.5, and we get

val(ev) + 〈w, v〉 = val(cz) + val(dz′) + 〈w, z〉+ 〈w, z′〉 = W1 +W2.

Hence trop(fg)(w) = W1 +W2 and we immediately get

inw(fg) =
∑
v∈Zn,

val(ev)+〈w,v〉=W1+W2

evt−val(ev)Xv

=
∑
v∈Zn,

val(ev)+〈w,v〉=W1+W2

∑
u+u′=v

cudu′t−val(ev)Xv

=

( ∑
u∈Zn,

val(cu)+〈u,w〉=W1

cut−val(cu)Xu

)
·

( ∑
u′∈Zn,

val(du′ )+〈u′,w〉=W2

du′t−val(du′ )Xu′

)

= inw(f) · inw(g).

In order to prove iii.), let w ∈ Γnval and nontrivial h ∈ inw(I). By i.) and

by considering products of monomials with generators only, we can write h =∑s
i=1 aiX

ui inw(gi) with ai ∈ k∗, ui ∈ Zn for some s ∈ N and gi ∈ I. Choose

appropriate lifts ci in the valuation ring R with ci = ai, val(ci) = 0. Then

get inw(ciX
ui) = cit−val(ci)Xui = aiX

ui . With ii.) obtain h =
∑s

i=1 inw(g̃i) for

g̃i = ciX
uigi ∈ I. The construction in Lemma 4.5 yields an h̃ ∈ I with h = inw(h̃).

At last prove iv.). For this let u ∈ Zn, Xu ∈ inw(I). Note that as in iii.), we

can write Xu =
∑s

i=1 inw(fi) for some s ∈ N and fi ∈ I. If supp(inw(fi)) ∩
supp(inw(fj)) 6= ∅ for some i, j ∈ {1, . . . , s}, then trop(fj)(w) − trop(fi)(w) =

val(a)− val(b) ∈ Γval for some a, b ∈ K∗. A similar argument as in 4.5 shows that
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inw(fi) + inw(fj) = inw(g) for

g = (ttrop(fj)(w)−trop(fi)(w)fi) + fj ∈ I,

as g satisfies trop(g)(w) = trop(fj)(w). Hence, after possibly combining them, we

can assume that the supports of the inw(fi)’s do not intersect. So there can be no

coefficient elimination in Xu =
∑s

i=1 inw(fi), which implies that there is actually

only one fi and this one satisfies inw(fi) = Xu.

We finally show a useful result that initial ideals preserve homogeneity.

Lemma 4.7. Let I ⊆ K[X±1
1 , . . . , X±1

n ] be a homogenous ideal. Fix w ∈ Rn. Then

inw(I) is homogenous as well, and there are homogenous polynomials g1, . . . , gs

such that inw(I) = 〈inw(g1), . . . , inw(gs)〉.

Proof: First show that inw(I) is homogenous, i.e. that there is a generating sys-

tem of homogenous polynomials. Let h1, . . . , hr be a finite homogenous generating

system of I (finiteness is possible because K[X±1
1 , . . . , X±1

n ] is Noetherian by 3.2),

and let f =
∑r̃

i=1 gihi ∈ I. If gi =
∑

u∈Zn cuX
u for i ∈ {1, . . . , r̃}, note that the

summands cuX
uhi in gihi =

∑
u∈Zn cuX

uhi are all homogenous and are elements

in I. Hence we can write f =
∑r

i=1 fi for homogenous fi ∈ I. By possibly combin-

ing the fi’s of same degree, we may also assume that deg(fi) 6= deg(fj) for i 6= j.

This implies in particular that supp(fi) ∩ supp(fj) = ∅ for i 6= j. Hence we see

immediately from the definition that inw(f) is the sum of initial forms of those

fi with trop(fi)(w) = trop(f)(w). Since each homogenous component fi lives in

I, the initial ideal inw(I) can be generated alone by elements inw(h) with h ∈ I
homogenous. By definition, the initial form of a homogenous polynomial is ho-

mogenous as well, so inw(I) is a homogenous ideal. Then again by Noetherianity,

we can reduce this homogenous generating set to a finite generating subset.

Remark 4.8. It can be shown that every ideal I ⊆ K[X±1
1 , . . . , X±1

n ] possesses

a finite generating system T = {f1, . . . , fm | fi ∈ I} such that for all w ∈ Rn

the initial ideal inw(I) contains a unit if and only if inw(T ) = {inw(f) | f ∈ T }
contains a unit.

Such a generating system of I is called a tropical basis. The proof of existence

is rather involved; for details see [MS15, Section 2.6]. A tropical basis has the

advantage that the question posed in Remark 4.4, if an initial ideal generates the

whole ring, can be answered by merely looking at the finitely many elements of
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its tropical basis. For example, any f ∈ K[X±1
1 , . . . , X±1

n ] is also a tropical basis

of the principal ideal 〈f〉 it generates. Indeed, suppose that inw(〈f〉) contains a

monomial h. By Proposition 4.6 iv.), h = inw(fg) = inw(f)inw(g) is a unit for

some g ∈ K[X±1
1 , . . . , X±1

n ]. But then inw(f) is of course also a unit.

We close this chapter by constructing tropicalizations of monomial maps of the

algebraic torus. After that, we will have gathered all the tools necessary to show

Kapranov’s Theorem, the main result of this thesis.

Remark 4.9. (Tropicalization of monomial maps) Let K be a valued field

with algebraic torus T := K∗ and for n,m ∈ N consider a monomial map

φ : T n → Tm, (y1, . . . , yn) 7→ (ya111 · · · yan1n , ya121 · · · yan2n , . . . , ya1n1 · · · yanmn ),

with aij ∈ Z. The corresponding matrix to φ is thus given by A = (aij)ij ∈
M(n×m,Z). Denote by ak the k-th column of A for k = 1, . . . ,m. As in 3.3, the

map φ induces a ring homomorphism φ∗ : K[Z±1
1 , . . . , Z±1

m ] → K[X±1
1 , . . . , X±1

n ]

given by φ∗(Zk) = Xak . Also denote by φ∗ the Z-homomorphism φ∗ : Zm → Zn

given by φ∗(ei) = ai, where e1, . . . , em is the standard basis of Zm. Again, this

canonically induces a map Hom(Zn,Z)→ Hom(Zm,Z), ϕ 7→ ϕ◦φ∗. We have Zn ∼=
Hom(Zn,Z) by mapping to dual basis, i.e. by sending ei to the homomorphism

e∗i : Zn → Z, ej 7→ δij. Here δij denotes the Kronecker delta. Putting this together,

we get an induced Z-homomorphism, called the tropicalization of φ:

trop(φ) : Zn → Hom(Zm,Z)→ Zm

ei 7→ (e∗i ◦ φ∗ : ej 7→ aij) =
m∑
k=1

aike
∗
k 7→ (ai1, . . . , aim).

Hence the corresponding m×n-matrix to trop(φ) is exactly (aji)ij = AT . We also

denote by trop(φ) the vector space homomorphism obtained by passing to tensor

product R⊗Z Zn. Recall that we have a canonical isomorphism

Rn ∼= R⊗Z Zn, (x1, . . . , xn) 7→
n∑
i=1

(xi ⊗ ei),

hence a short calculation shows that trop(φ) : Rn → Rm is canonically given by

trop(φ)(x) = ATx.

Note that trop(φ)(Γnval) ⊆ Γmval. Indeed, for y = (y1, . . . , yn) ∈ T n and val(y) :=
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(val(y1), . . . , val(yn)) have

trop(φ)(val(y)) = ATval(y)

= (〈a1, val(y)〉, . . . 〈am, val(y)〉, )

= (val(ya111 · · · yan1n ), . . . , val(ya1m1 · · · yanmn ))

= val(φ(y)).

(4.6)

Given a monomial automorphism φ, we will later see that tropicalization of φ

has the advantage that for a Laurent polynomial f and w ∈ Rn, the initial form

introp(φ)(f)(φ
−1∗(f)) inherits many properties from inw(f). Hence tropicalization

provides a useful tool for studying initial forms under coordinate changes of the

torus.



5

Tropical Hypersurfaces

We now introduce the tropical hypersurface. This is the tropicalization of a very

affine variety generated by a Laurent polynomial over a valued field.

Definition 5.1. Let K be a field with a (possibly trivial) valuation and f ∈
K[X±1

1 , . . . , X±1
n ]. The tropical hypersurface trop(V (f)) is the set

trop(V (f)) = {w ∈ Rn | the minimum in trop(f)(w) is achieved at least twice}.
(5.1)

We see that the tropical hypersurface consists of all points in Rn where the piece-

wise linear function trop(f) fails to be linear. If the valuation on K has a splitting

w → tw, then the notion of initial forms exists and trop(V (f)) can be rephrased

as the set of weight vectors w ∈ Rn for which the initial form inw(f) is not a unit

in k[X±1
1 , . . . , X±1

n ]. The equivalence of these definitions is a part of Kapranov’s

Theorem.

Example 5.2. Let K = C{{t}} with its natural valuation. Consider the bivariate

polynomial f ∈ K[X±1, Y ±1] given by f = tX3Y 2 + t2XY + (1 + t4)X. Then

trop(f)(w1, w2) = min{1 + 3w1 + 2w2, 2 + w1 + w2, w1}, and one easily sees that

trop(V (f)) = {w2 = 1− 2w1 ∧ w1 ≥
3

2
}

∪ {w2 = −1

2
− w1 ∧ w1 ≤

3

2
}

∪ {w2 = −2 ∧ w1 ≥
3

2
}.

The corresponding graph is the tropical curve shown in Figure 5.1.

27
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(3/2, -2) 

Figure 5.1: Tropical curve of tX3Y 2 + t2XY + (1 + t4)X.

We now formulate Kapranov’s Theorem which links the classical hypersurface V (f)

with trop(V (f)). However, we need to assume that the field K is algebraically

closed and has a nontrivial valuation. For an arbitrary field K with a nontrivial

valuation, we can pass to the algebraic closure K and extend the valuation to K,

which is possible by Theorem 2.3. If K is trivially valued, we may pass for example

to K((t)) with extension of the usual valuation as in 2.9.

Theorem 5.3. (Kapranov) Let (K, val) be an algebraically closed field with

a nontrivial valuation and we fix a Laurent polynomial f(X) =
∑

u∈Zn cuX
u ∈

K[X±1
1 , . . . , X±1

n ]. Then the following three sets conincide:

i.) the tropical hypersurface trop(V (f)) ⊆ Rn;

ii.) the set {w ∈ Rn | inw(f) is not a monomial};

iii.) the closure in Rn of {(val(y1), . . . , val(yn)) | (y1, . . . , yn) ∈ V (f)} with respect

to the Euclidean topology.

Furthermore, if f is irreducible and w ∈ Γnval∩trop(V (f)), then the set {y ∈ V (f) |
val(y) = w} is Zariski dense in the hypersurface V (f).

Lemma 5.4. Let K be algebraically closed, valued field, and f =
∑

u∈Zn cuX
u ∈

K[X±1
1 , . . . , X±1

n ]. Then the closure Ā with regard to the Euclidean topology of

the set A := {w ∈ Γnval | inw(f) is not a monomial} is

Ā = B := {w ∈ Rn | inw(f) is not a monomial}.

Proof: As K is algebraically closed, the value group Γval is dense in R by Lemma

2.10. Thus every open neighborhood of a point in B intersects A, hence we have
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A ⊆ B ⊆ Ā. So we merely need to show that B is closed, i.e. show that C :=

Rn \ B = {w ∈ Rn | inw(f) is a monomial} is open. We give a complete epsilon-

delta proof.

Let w ∈ C. Then the minimum in trop(f)(w) = min
u∈supp(f)

{val(cu) + 〈u,w〉} is

achieved only once, i.e. there exists v ∈ supp(f) such that for all u 6= v we have

val(cv) + 〈v, w〉 < val(cu) + 〈u,w〉.

So given any u ∈ supp(f), define the obviously continuous function

gu : Rn → R, x 7→ val(cu) + 〈u, x〉.

Have gv(w) < gu(w) for all u ∈ supp(f) \ {v}. Let ε := min
u∈supp(f)\{v}

{gu(w) −

gv(w)} > 0. Because of continuity of the gu’s, for each u ∈ supp(f) \ {v} get

δu > 0 such that |gu(w)− gu(w̃)| < ε
2

for all w̃ in the open ball Bδu(w) around w.

Set δ := min
u∈supp(f)\{v}

{δu} and let x ∈ Bδ(w).

Then for all u ∈ supp(f) \ {v} we have

gu(x)︸ ︷︷ ︸
>gu(w)− ε

2

− gv(x)︸ ︷︷ ︸
<gv(w)+ ε

2

> gu(w)− ε

2
− gv(w)− ε

2
≥

gu(w)−gv(w)≥ε
ε− ε = 0.

Thus the minimum in trop(f)(x) is also achieved only once and inx(f) is a mono-

mial, which implies Bδ(w) ⊆ C and C is open.

Proof of Theorem 5.3: Let w = (w1, . . . , wn) ∈ trop(V (f)). By definition

(5.1), the minimum in W := trop(f)(w) is achieved at least twice. Therefore, by

definition of initial forms, inw(f) is not a monomial. Thus set i.) is contained in

set ii.). Conversely the same: if inw(f) is not a monomial, the minimum in W is

achieved at least twice, so w ∈ trop(V (f)). So set i.) and set ii.) are equal.

We now prove that set iii.) is contained in set i.). By Lemma 5.4 set ii.) (and

thus set i.)) is closed, so it is enough to show that points of the form val(y) =

(val(y1), . . . , val(yn)) where y = (y1, . . . , yn) ∈ V (f) lie in set i.).

Let y ∈ V (f), then f(y) =
∑

u∈Zn cuy
u = 0. This implies

val
( ∑
u∈Zn

cuy
u
)

= val(0) =∞ > val(cvy
v)
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for all v ∈ supp(f). By Lemma 2.5, this means that the minimum in

min
v∈supp(f)

{val(cvy
v)} = min

v∈supp(f)
{val(cv) + 〈v, val(y)〉}

is achieved at least twice. Hence val(y) ∈ trop(V (f)) and set iii.) is subset of set

i.).

It remains to show that set i.) is contained in iii.). This result follows directly from

the following proposition and Lemma 5.4. Proposition 5.5 states that a root of an

initial form lifts to a root of its defining Laurent polynomial. Note here that by

2.7 the residue field k is algebraically closed as well. So assuming that a root of an

initial form exists does not pose any restriction. In addition, the proposition also

shows that the set {y ∈ V (f) | val(y) = w} is Zariski dense when f is irreducible,

and we are done.

Proposition 5.5. Let K be algebraically closed, valued field and f =
∑

u∈Zn cuX
u

∈ K[X±1
1 , . . . , X±1

n ]. Let w = (w1, . . . , wn) ∈ Γnval. Suppose that inw(f) is not a

monomial and α = (α1, . . . , αn) ∈ (k∗)n satisfies inw(f)(α) = 0.

Then there exists y = (y1, . . . , yn) ∈ T n satisfying f(y) = 0, val(y) = w, and

t−wiyi = αi for 1 ≤ i ≤ n.

Furthermore, if f is irreducible, then the set of such y is Zariski dense in the

hypersurface V (f).

We will use in the proof of 5.5 that these properties of f are invariant under coordi-

nate change, which is the statement of the following lemma. It is a generalization

of the special case used in the proof of [MS15, Proposition 3.1.5].

Lemma 5.6. Let f, w, α and y as in 5.5.

Let φ be a monomial automorphism on T n. Also denote by φ the monomial

automorphism induced on (k∗)n. Set α̃ := φ(α), w̃ := trop(φ)(w), f̃ := φ−1∗(f)

and ỹ := φ(y). Then f̃ , w̃, α̃ and ỹ satisfy the same properties as in 5.5, i.e.:

i.) w̃ ∈ Γnval;

ii.) inw̃(f̃) is not a monomial;

iii.) inw̃(f̃)(α̃) = 0;

iv.) f̃(ỹ) = 0;

v.) val(ỹ) = w̃;
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vi.) t−w̃i ỹi = α̃i.

Proof: Let A ∈ GLn(Z) be the matrix representing the monomial map as in

Remark 3.3 and have f̃ =
∑

u∈Zn cuX
A−1u =

∑
u∈Zn cAuX

u. By (4.6), we have

val(ỹ) = trop(φ)(val(y)) = trop(φ)(w) = w̃, which shows i.) and v.). The rest

follows easily by simply plugging in the identities. We show ii.) and iii.) exem-

plarily.

For ii.) note that supp(f̃) = A−1 · supp(f) and

trop(f̃)(w̃) = trop(φ−1∗(f))(trop(φ)(w)) = min
u∈supp(f̃)

{val(cAu) + 〈u,ATw〉}

= min
u∈supp(f)

{val(cA−1Au) + 〈A−1u,ATw〉}

= min
u∈supp(f)

{val(cu) + 〈u,w〉}

= trop(f)(w).

(5.2)

In particular in (5.2) we see that the minimum in trop(f̃)(w̃) is achieved only once

if and only if it is achieved only once in trop(f)(w), which shows ii.).

For iii.) set W := trop(f)(w). With (5.2) obtain

inw̃(f̃)(α̃) =
∑

u∈supp(f̃),

val(cAu)+〈u,ATw〉=W

t−val(cAu)cAuφ(α)u

=
∑

u∈supp(f),
val(cu)+〈u,w〉=W

t−val(cu)cuα
AA−1u

= inw(f)(α) = 0.

Proof of Proposition 5.5: Show the claim by induction on n. Let n = 1.

As we are looking for a root of f , and as forming of inital forms commutes with

multiplication by units by 4.6, we may multiply f by a unit if necessary and assume

that f(X) =
∑s

i=0 ciX
i where c0, cs 6= 0. As K is algebraically closed, get f =∏s

i=1 (aiX − bi) for appropriate ai, bi ∈ K∗. Hence inw(f) =
∑s

i=1 inw(aiX − bi)
by Proposition 4.6 ii.). So there exists some 0 ≤ j ≤ s such that inw(ajX −
bj)(α) = 0. As α ∈ k∗, this implies that inw(ajX − bj) is not a monomial.

Hence by definition of initial forms we must have val(aj) + w = val(bj), and
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inw(ajX − bj) = t−val(bj)+wajX − t−val(bj)bj, so α = t−wbj/aj. Set y := bj/aj ∈ K∗.
Then obviously f(y) = 0, val(y) = val(bj) − val(aj) = w, and t−val(y)y = α as

required.

We now assume n > 1 and that the claim holds for smaller dimensions. We want

to reduce now to the case where no two monomials appearing in f carry the same

power of Xn. This has the consequence that, when f is regarded as a polynomial

in Xn with coefficients in K[X±1
1 , . . . , X±1

n−1], the coefficients are all monomials of

the form duX
u for du ∈ K and u ∈ Zn−1.

In order to show this, let l ∈ N>0 and consider the monomial map φl, where the

j-th column of the representation matrix Al is given by (δ1j, . . . , δn−1,j, l
j) for 1 ≤

j ≤ n− 1 and (0, . . . , 0, 1) for j = n. Here δij again denotes the Kronecker delta.

It is clear that φl is an automorphism, as Al is obviously invertible. The induced

automorphism φ∗l on the Laurent polynomial ring is given by φ∗l (Xj) = XjX
lj

n for

1 ≤ j ≤ n − 1 and φ∗l (Xn) = Xn. Now given any u = (u1, . . . , un−1) ∈ Zn−1 we

have

φ∗l (X
uX i

n) = XuX
i+

∑n−1
j=1 uj l

j

n .

If we choose l very large, we obtain a polynomial φ∗l (f) where each monomial

carries a different power of Xn as desired. So by Lemma 5.6, we can reduce

the claim to those special φ∗l (f)’s (once an appropriate y has been found, simply

apply Lemma 5.6 with φ∗l (f), trop(φ−1
l )(w), φ−1

l (α)), φ−1
l (y) and monomial auto-

morphism φl).

So we now assume that f has this special form as above. We consider the set of

all y := (y1, . . . , yn−1) ∈ T n−1 with val(yi) = wi and t−wiyi = αi for 1 ≤ i ≤ n− 1.

By 3.4 this set is Zariski dense in T n−1. Because of f ’s special form, for all such

choices the polynomial g(Xn) := f(y1, . . . , yn−1, Xn) is not zero.

We write u′ for the projection of a vector u ∈ Zn onto its first n− 1 coordinates.

Also by f ’s special form, writing g(Xn) =
∑

i∈Z diX
i
n, we have for all di 6= 0

the coefficient di = cuy
u′ for a unique u = (u1, . . . , un) ∈ Zn which has un = i.

Furthermore note that

val(di)+wni = val(cu)+val(yu
′
)+wni = val(cu)+〈w′, u′〉+wnun = val(cu)+〈w, u〉,
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therefore trop(g)(wn) = trop(f)(w), and

inwn(g) =
∑

i∈supp(g),
val(di)+wni=trop(g)(wn)

t−val(di)diX
i
n

=
(1)

∑
u∈supp(f),

val(cuyu
′
)+wnun=trop(g)(wn)

t−val(cu)cut−〈u
′,w′〉yu′Xun

n

=
(2)

∑
u∈supp(f),

val(cu)+〈w,u〉=trop(f)(w)

t−val(cu)cu · αu11 · · ·α
un−1

n−1 X
un
n

= inw(f)(α1, . . . , αn−1, Xn).

For equality (1) note that val(yu
′
) = 〈u′, w′〉 and (2) follows from t−wiyi = αi for

1 ≤ i ≤ n− 1.

Hence inwn(g)(αn) = 0. By the n = 1 case there is yn ∈ K∗ with val(yn) = wn and

t−wnyn = αn for which g(yn) = 0, and thus f(y1, . . . , yn−1, yn) = 0. We conclude

(y1, . . . , yn) is the required point in the hypersurface V (f).

It remains to show that if f is irreducible, then the set Y = {y = (y1, . . . , yn) ∈
V (f) | val(yi) = wi, t−wiyi = αi for 1 ≤ i ≤ n} is Zariski dense in V (f). So we

need to show that any nonempty open set in V (f) intersects Y . Let U ⊆ V (f)

be nonempty open set in V (f). Then V (f) \ U = V (I) ∩ V (f) for some ideal

I ⊆ K[X±1
1 , . . . , X±1

n ]. We need to find a point y ∈ Y with y /∈ V (I). Suppose we

have Y ⊆ V (I), in particular any g ∈ I satisfies Y ⊆ V (g). If we can show that

g ∈ 〈f〉, then already I ⊆ 〈f〉 and V (f) ⊆ V (I), hence V (I) ∩ V (f) = V (f) and

U = ∅ in contradiction to our assumption.

So it suffices to show that any g ∈ K[X±1
1 , . . . , X±1

n ] with Y ⊆ V (g) satisfies

g ∈ 〈f〉.
Given any (y1, . . . , yn−1) ∈ T n−1, with val(yi) = wi and t−wiyi = αi for all i, we

have just shown how to construct a point y = (y1, . . . , yn−1, yn) ∈ Y . The set

of such (y1, . . . , yn−1) is Zariski dense in T n−1 by Lemma 3.4. This means that

the projection of Y onto the first n − 1 coordinates cannot be contained in V (h)

for any nontrivial h ∈ K[X±1
1 , . . . , X±1

n−1]. Now suppose there exists a nonzero

g ∈ K[X±1
1 , . . . , X±1

n ] with Y ⊆ V (g). We have to show that g is a multiple of

f . Have 〈f, g〉 ∩ K[X±1
1 , . . . , X±1

n−1] = {0} (otherwise Y would be contained in a

hypersurface in T n−1). We claim, that since f is irreducible, this already implies

that g ∈ 〈f〉. This follows from a series of basic algebraic arguments which we will

nevertheless write out in detail:
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Denote A := K[X±1
1 , . . . , X±1

n−1] (so K[X±1
1 , . . . , X±1

n ] = A[X±1
n ]). After multi-

plying by appropriate powers of Xn, we may get f̃ , g̃ ∈ A[Xn] =: A[X] with

nonzero constant term. As 〈f, g〉 ∩ K[X±1
1 , . . . , X±1

n−1] = {0}, we must have

deg(f̃), deg(g̃) ≥ 1 in A[X]. This implies that f̃ is irreducible in A[X]. Indeed,

suppose f̃ = f ·Xc
n for some c ∈ Z and suppose f̃ is reducible, so f̃ = ab for non-

units a, b ∈ A[X], in particular a, b are not monomials of A = K[X±1
1 , . . . , X±1

n−1].

As the constant term of f̃ is not zero, both a, b also cannot be monomials in

K[X±1
1 , . . . , X±1

n−1, Xn]. Have f = abX−cn . As f is irreducible, this would however

imply that a or b is a unit in A[X±1
n ], hence monomial in K[X±1

1 , . . . , X±1
n−1, Xn],

which is a contradiction.

The Laurent polynomial ring A is a unique factorization domain as it is a local-

ization of a polynomial ring in multiple variables.

Now we know that f̃ , g̃ /∈ A by assumption and that f̃ is non-constant, irre-

ducible in A[X] and hence also primitive. It is obvious that if f̃ | g̃ in A[X],

then also f | g in A[X±1
n ]. So assume f̃ - g̃ in A[X]. Let Q be the quotient

field of the unique factorization domain A. As f̃ primitive, f̃ - g̃ in Q[X]. By

Gauss Lemma, f̃ stays irreducible in Q[X]. But as Q[X] is a principal ideal do-

main, 〈f̃〉 is maximal and thus 〈f̃ , g̃〉 = Q[X], so there exist a, b ∈ Q[X] with

af̃ + bg̃ = 1. Clearing the denominators of the coefficients yields a nonzero ele-

ment in 〈f̃ , g̃〉 ∩ A =⇒ 〈f, g〉 ∩ A 6= {0} in A[X±1
n ] = K[X±1

1 , . . . , X±1
n ], which is

a contradiction.

This completes the proof.

We finally close this chapter with a short example confirming Kapranov’s Theorem.

Example 5.7. Once more let K = C{{t}} with the usual valuation. Consider

the bivariate polynomial f = XY + Y + 1 ∈ K[X±1, Y ±1] with trop(f)(w1, w2) =

min{w1 + w2, w2, 0} and

trop(V (f)) = {w1 = 0 ∧ w2 ≤ 0} ∪ {w2 = −w1 ∧ w1 ≤ 0} ∪ {w2 = 0 ∧ w1 ≥ 0}.

The curve is depicted in Figure 5.2.

Furthermore get

V (f) = {
(
z,− 1

z + 1

)
| z ∈ K∗ \ {−1}}.
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(0,0) 

Figure 5.2: Tropical curve of XY + Y + 1.

From val(− 1
z+1

) = −val(z+1) ≤ −min{val(z), 0}, where equality holds if val(z) 6=
0, we obtain

(val(z), val(− 1

z + 1
)) =



(val(z), 0) if val(z) > 0,

(val(z),−val(z)) if val(z) < 0,

(0,−val(z + 1)) if val(z + 1) > 0,

(0, 0) otherwise.

(5.3)

As z runs over K∗ \ {−1}, the case distinction (5.3) describes all points in Γ2
val

which lie in trop(V (f)). We recall that since K is algebraically closed, Γval is dense

in R by Lemma 2.10, so the closure of these points is indeed the entire tropical

curve as claimed.
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