Forms on the Analytification of Algebraic Varieties

Jonathan Pirnay (MN 1740960)

Lecture in the Seminar on Non-Archimedean Analytic Geometry
December 4th 2018

1. Introduction

1.1. Motivated by (p, q)-forms in complex analytic geometry, we will define in this lecture the space $A^{p, q}(U)$ of superforms of bidegree (p, q) on an open subset $U \subseteq \mathbb{R}^{r}$. These superforms can be restricted to the support of polyhedral complexes in \mathbb{R}^{r}. By the Bieri-Groves-Theorem, a closed subscheme of the split torus $\operatorname{Spec}\left(K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]\right)$ maps to the support of a polyhedral complex in \mathbb{R}^{r}. We want to use this connection to define differential forms on the analytification $X^{\text {an }}$ of an algebraic variety X over some algebraically closed field K. For this we introduce the notion of very affine open subsets, i.e. open affine subsets of X which embed as closed subschemes into some split torus. These form a basis for the Zariski topology on X. We will then see that any open subset V of $X^{\text {an }}$ can be covered by open subsets of very affine open subsets which behave well with respect to the tropical coordinates. This notion then allows us to define differential forms on $X^{\text {an }}$, with an associated sheaf.
1.2. Let N be a free abelian group of rank r with dual abelian group $M:=$ $\operatorname{Hom}(N, \mathbb{Z})$ and associated real vector spaces $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$ respectively $M_{\mathbb{R}}$ of dimension r. The choice of a \mathbb{Z}-basis of N induces isomorphisms $N \cong \mathbb{Z}^{r}, N_{\mathbb{R}} \cong$ $\mathbb{R}^{r}, M_{\mathbb{R}} \cong \mathbb{R}^{r *}$ and leads to coordinates x_{1}, \ldots, x_{r} on $N_{\mathbb{R}}$. Our following constructions will only depend on the underlying integral \mathbb{R}-affine structures and not on the choice of coordinates. Here an integral \mathbb{R}-affine space is a real affine space whose underlying vector space comes with a lattice. Hence we restrict ourselves to the case $N=\mathbb{Z}^{r}$ with standard basis e_{1}, \ldots, e_{r}. Note that in subsequent sections in the general case the algebraic torus $\operatorname{Spec}(K[N])$ with character group N takes the role of the torus $\operatorname{Spec}\left(K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]\right)$ of rank r.

2. Superforms on \mathbb{R}^{r}

2.1. Definition.

i.) For an open subset $U \subseteq \mathbb{R}^{r}$ we denote by $A^{p}(U)$ the space of smooth real differential forms of degree p. We define the space of superforms of bidegree (p, q) on U as
$A^{p, q}(U):=A^{p}(U) \otimes_{\mathcal{C}^{\infty}(U)} A^{q}(U)=A^{p}(U) \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *}=\mathcal{C}^{\infty}(U) \otimes_{\mathbb{R}} \Lambda^{p} \mathbb{R}^{r *} \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *}$.
ii.) With choice of a basis x_{1}, \ldots, x_{r} of \mathbb{R}^{r} we can formally write a superform $\alpha \in A^{p, q}(U)$ as

$$
\alpha=\sum_{|I|=p,|J|=q} \alpha_{I J} d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}
$$

where $I=\left\{i_{1}, \ldots, i_{p}\right\}$ respectively $J=\left\{j_{1}, \ldots, j_{q}\right\}$ are ordered subsets of $\{1, \ldots, r\}, \alpha_{I J} \in \mathcal{C}^{\infty}(U)$ are smooth functions and

$$
d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}:=\left(d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}\right) \otimes_{\mathbb{R}}\left(d x_{j_{1}} \wedge \cdots \wedge d x_{j_{q}}\right)
$$

iii.) We define the wedge product

$$
\begin{gathered}
A^{p, q}(U) \times A^{p^{\prime}, q^{\prime}}(U) \rightarrow A^{p+p^{\prime}, q+q^{\prime}}(U) \\
(\alpha, \beta) \mapsto \alpha
\end{gathered}
$$

in coordinates as

$$
\begin{aligned}
\alpha \wedge \beta & :=\left(\sum_{|I|=p,|J|=q} \alpha_{I J} d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}\right) \wedge\left(\sum_{|K|=p^{\prime},|L|=q^{\prime}} \beta_{K L} d^{\prime} x_{K} \wedge d^{\prime \prime} x_{L}\right) \\
& :=(-1)^{p^{\prime} q} \sum_{|I|=p,|J|=q,|K|=p^{\prime},|L|=q^{\prime}} \alpha_{I J} \beta_{K L} d^{\prime} x_{I} \wedge d^{\prime} x_{K} \wedge d^{\prime \prime} x_{J} \wedge d^{\prime \prime} x_{L}
\end{aligned}
$$

where $d^{\prime} x_{I} \wedge d^{\prime} x_{K} \in \Lambda^{p+p^{\prime}} \mathbb{R}^{r *}$ respectively $d^{\prime \prime} x_{J} \wedge d^{\prime \prime} x_{L} \in \Lambda^{q+q^{\prime}} \mathbb{R}^{r *}$ is the usual wedge product.
iv.) There is a differential operator

$$
d^{\prime}: A^{p, q}(U)=A^{p}(U) \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *} \rightarrow A^{p+1} \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *}=A^{p+1, q}(U)
$$

given by $D \otimes_{\mathbb{R}}$ id where D is the usual exterior derivative on $A^{p}(U)$. Also note that $A^{p, q}=\Lambda^{p} \mathbb{R}^{r *} \otimes_{\mathbb{R}} A^{q}(U)$, and we define a second operator $d^{\prime \prime}:=$ $(-1)^{p} \cdot \mathrm{id} \otimes_{\mathbb{R}} D$. In coordinates this gives

$$
d^{\prime}\left(\sum_{|I|=p,|J|=q} \alpha_{I J} d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}\right)=\sum_{|I|=p,|J|=q} \sum_{i=1}^{r} \frac{\partial \alpha_{I J}}{\partial x_{i}} d^{\prime} x_{i} \wedge d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}
$$

and

$$
d^{\prime \prime}\left(\sum_{|I|=p,|J|=q} \alpha_{I J} d^{\prime} x_{I} \wedge d^{\prime \prime} x_{J}\right)=(-1)^{p} \sum_{|I|=p,|J|=q} \sum_{i=1}^{r} \frac{\partial \alpha_{I J}}{\partial x_{i}} d^{\prime} x_{I} \wedge d^{\prime \prime} x_{i} \wedge d^{\prime \prime} x_{J}
$$

Finally define $d:=d^{\prime}+d^{\prime \prime}$.
2.2. Remark. As in differential geometry, we may view a superform

$$
\alpha=\sum_{i=1}^{n} \alpha_{i} \otimes \omega_{i} \otimes \mu_{i} \in A^{p, q}(U)=\mathcal{C}^{\infty}(U) \otimes \Lambda^{p} \mathbb{R}^{r *} \otimes \Lambda^{q} \mathbb{R}^{r *}
$$

at a point $x \in U$ as a multilinear map

$$
\mathbb{R}^{p+q} \rightarrow \mathbb{R},\left(n_{1}, \ldots, n_{p+q}\right) \mapsto \sum_{i=1}^{n} \alpha_{i}(x) \omega_{i}\left(n_{1}, \ldots, n_{p}\right) \mu_{i}\left(n_{p+1}, \ldots, n_{p+q}\right)
$$

which is alternating in $\left(n_{1}, \ldots, n_{p}\right)$ and $\left(n_{p+1}, \ldots, n_{p+q}\right)$. We write $\left\langle\alpha(x) ; n_{1}, \ldots, n_{p+q}\right\rangle$ for a superform α and such an evaluation at $x \in U$ and $n_{1}, \ldots, n_{p+q} \in \mathbb{R}^{r}$.

2.3. Remark.

i.) For superforms α respectively β of degree (p, q) respectively (p^{\prime}, q^{\prime}) one computes easily the relations

$$
d^{\prime}(\alpha \wedge \beta)=d^{\prime} \alpha \wedge \beta+(-1)^{p+q} \alpha \wedge d^{\prime} \beta
$$

and similarly

$$
d^{\prime \prime}(\alpha \wedge \beta)=d^{\prime \prime} \alpha \wedge \beta+(-1)^{p+q} \alpha \wedge d^{\prime \prime} \beta
$$

Hence the choice of sign in $d^{\prime \prime}$.
ii.) Note that we have as usual $d^{\prime}\left(d^{\prime} \alpha\right)=0$ and $d^{\prime \prime}\left(d^{\prime \prime} \alpha\right)=0$, however in general not $d^{\prime}\left(d^{\prime \prime} \alpha\right)=0$. Indeed, for \mathbb{R}^{2} with coordinates x, y consider the superform $x y \in A^{0,0}\left(\mathbb{R}^{2}\right)=\mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$. Then $d^{\prime}\left(d^{\prime \prime}(x y)\right)=d^{\prime}\left(y d^{\prime \prime} x+x d^{\prime \prime} y\right)=d^{\prime} y \wedge d^{\prime \prime} x+$ $d^{\prime} x \wedge d^{\prime \prime} y \neq 0$.

2.4. Remark.

i.) Let $F: \mathbb{R}^{r^{\prime}} \rightarrow \mathbb{R}^{r}$ with $F(x)=f(x)+a$ be an affine map. Here f is the corresponding linear map and $a \in \mathbb{R}^{r}$. Furthermore let $U^{\prime} \subseteq \mathbb{R}^{r^{\prime}}$ and $U \subseteq \mathbb{R}^{r}$ with $F\left(U^{\prime}\right) \subseteq U$.
Note that f induces a map $f^{*}: \mathbb{R}^{r *} \rightarrow \mathbb{R}^{r^{\prime} *}$ which again induces a map $f^{*}: \Lambda^{k} \mathbb{R}^{r *} \rightarrow \Lambda^{k} \mathbb{R}^{r^{\prime} *}$. In particular we obtain a well-defined pullback morphism

$$
\begin{gathered}
F^{*}: A^{p, q}(U)=\mathcal{C}^{\infty}(U) \otimes_{\mathbb{R}} \Lambda^{p} \mathbb{R}^{r *} \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *} \rightarrow A^{p, q}\left(U^{\prime}\right) \\
g \otimes \omega \otimes \mu \mapsto(g \circ F) \otimes f^{*} \omega \otimes f^{*} \mu
\end{gathered}
$$

ii.) Note that with the representation $A^{p, q}(U)=A^{p}(U) \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *}$ the pullback for an affine map F as above can be written as

$$
F^{*}: A^{p}(U) \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r *} \rightarrow A^{p}\left(U^{\prime}\right) \otimes_{\mathbb{R}} \Lambda^{q} \mathbb{R}^{r^{\prime} *} \omega \otimes_{R} \mu \mapsto F^{*} \omega \otimes_{\mathbb{R}} f^{*} \mu
$$

where $F^{*} \omega$ is the usual pullback of smooth p-forms with respect to the smooth function F. In particular we obtain the corresponding result that F^{*} commutes with $d^{\prime}, d^{\prime \prime}$ and d.
iii.) For $n_{1}^{\prime}, \ldots, n_{p+q}^{\prime} \in \mathbb{R}^{r^{\prime}}$ and $x^{\prime} \in U^{\prime}$ the evaluation as in Remark 2.2 of the pullback can be written as

$$
\left\langle F^{*} \alpha\left(x^{\prime}\right) ; n_{1}^{\prime}, \ldots, n_{p+q}^{\prime}\right\rangle=\left\langle\alpha\left(F\left(x^{\prime}\right)\right) ; f\left(n_{1}^{\prime}\right), \ldots, f\left(n_{p+q}^{\prime}\right)\right\rangle
$$

iv.) Let F : $U^{\prime} \rightarrow U$ be a smooth map where $U \subseteq \mathbb{R}^{r}$ and $U^{\prime} \subseteq \mathbb{R}^{r^{\prime}}$ are open subsets. We can define a 'naive' pullback
$F^{*}: A^{p, q}(U)=A^{p}(U) \otimes_{\mathcal{C}^{\infty}(U)} A^{q}(U) \rightarrow A^{p}\left(U^{\prime}\right) \otimes_{\mathcal{C}^{\infty}\left(U^{\prime}\right)} A^{q}\left(U^{\prime}\right)=A^{p, q}\left(U^{\prime}\right)$
which is just given by the tensor product of the usual pullbacks of smooth differential p - respectively q-forms. This construction and the definition in i.) match for affine maps, however in general for smooth maps it doesn't commute with $d^{\prime}, d^{\prime \prime}, d$. Indeed, let $U=\mathbb{R}^{2}$ and $U^{\prime}=\mathbb{R}$ and $F(x, y)=x y$ and t the coordinate in \mathbb{R}, then $d^{\prime} F^{*}\left(d^{\prime \prime} t\right)=d^{\prime}\left(y d^{\prime \prime} x+x d^{\prime \prime} y\right)=d^{\prime} y \wedge d^{\prime \prime} x+$ $d^{\prime} x \wedge d^{\prime \prime} y \neq 0$, but $d^{\prime}\left(d^{\prime \prime} t\right)=0$ and hence $d^{\prime} F^{*}\left(d^{\prime \prime} t\right) \neq F^{*}\left(d^{\prime}\left(d^{\prime \prime} t\right)\right)$.
The reason is that $d^{\prime}=D \otimes \mathrm{id}$, but the pullback on the second factor uses the differential of F at the point $x \in \mathbb{R}^{r^{\prime}}$, which might depend on x. In the affine case however, the differential has no such dependence.

3. Superforms on polyhedral complexes

3.1. Reminder of basic definitions in convex geometry.

i.) A polyhedron $\sigma \subseteq \mathbb{R}^{r}$ is the intersection of finitely many halfspaces $H_{i}=$ $\left\{w \in \mathbb{R}^{r} \mid\left\langle u_{i}, w\right\rangle \leq c_{i}\right\}$ with $c_{i} \in \mathbb{R}$ and $u_{i} \in \mathbb{R}^{r *}, i \in\{1, \ldots, n\}$. A polytope is a bounded polyhedron.
ii.) We say that σ is an integral Γ-affine polyhedron for an additive subgroup of \mathbb{R} if we may choose all $u_{i} \in \mathbb{Z}^{r *}$ and $c_{i} \in \Gamma$.
iii.) Let $J=\left\{j \in\{1, \ldots, n\} \mid\left\langle u_{j}, w\right\rangle=c_{j} \forall w \in \sigma\right\}$. Then $\mathbb{A}_{\sigma}=\left\{x \in \mathbb{R}^{r} \mid\right.$ $\left.\left\langle u_{j}, x\right\rangle=c_{j} \forall j \in J\right\}$ is the smallest affine subspace of \mathbb{R}^{r} which contains σ. Its underlying linear subspace is $\mathbb{L}_{\sigma}=\left\{x \in \mathbb{R}^{r} \mid\left\langle u_{j}, x\right\rangle=0 \forall j \in J\right\}$. The dimension of σ is $\operatorname{dim} \sigma:=\operatorname{dim} \mathbb{L}_{\sigma}$.
iv.) In particular for an integral Γ-affine polyhedron σ (recall that $\operatorname{ker}(A) \cap \mathbb{Z}^{r}$ is a lattice for a matrix A with integral coefficients) we obtain a lattice $\mathbb{Z}_{\sigma}:=\mathbb{L}_{\sigma} \cap \mathbb{Z}^{r}$ in \mathbb{L}_{σ}.
v.) The face of a polyhedron σ is either σ itself, the empty set or an intersection of σ with the boundary of one of its defining halfspaces.
vi.) An (integral Γ-affine) polyhedral complex \mathscr{C} in \mathbb{R}^{r} is a finite set of (integral Γ-affine) polyhedra in \mathbb{R}^{r} which satisfies the following conditions:
a.) If $\sigma \in \mathscr{C}$ then all faces of σ lie in \mathscr{C}.
b.) If $\sigma, \tau \in \mathscr{C}$, then $\sigma \cap \tau$ is a face of both.
vii.) The support $|\mathscr{C}|$ of \mathscr{C} is the union of all polyhedra in \mathscr{C}. The polyhedral complex \mathscr{C} is called pure dimensional of dimension n if every maximal polyhedron in \mathscr{C} has dimension n. Write $\mathscr{C}_{k}:=\{\sigma \in \mathscr{C} \mid \operatorname{dim} \sigma=k\}$ for $k \in \mathbb{N}$.
viii.) A polyhedral complex \mathscr{D} subdivides the polyhedral complex \mathscr{C} if they have the same support and every $\delta \in \mathscr{D}$ is contained in some $\sigma \in \mathscr{C}$. We then say \mathscr{D} is a subdivision of \mathscr{C}.
3.2. Definition. Let \mathscr{C} be a polyhedral complex in \mathbb{R}^{r} and Ω an open subset of $|\mathscr{C}|$.
i.) A superform $\alpha \in A^{p, q}(\Omega)$ of bidegree (p, q) is given by a superform $\alpha^{\prime} \in$ $A^{p, q}(V)$ where $V \subseteq \mathbb{R}^{r}$ is open and $V \cap|\mathscr{C}|=\Omega$.
ii.) Two forms $\alpha^{\prime} \in A^{p, q}(V)$ and $\alpha^{\prime \prime} \in A^{p, q}(W)$ with $V \cap|\mathscr{C}|=W \cap|\mathscr{C}|=\Omega$ define the same superform in $A^{p, q}(\Omega)$ if their restrictions to any polyhedron in \mathscr{C} agree. That is, for all $\sigma \in \mathscr{C}$ we have

$$
\left\langle\alpha^{\prime}(x) ; v_{1}, \ldots, v_{p}, w_{1}, \ldots, w_{q}\right\rangle=\left\langle\alpha^{\prime \prime}(x) ; v_{1}, \ldots, v_{p}, w_{1}, \ldots, w_{q}\right\rangle
$$

for all $x \in \sigma \cap \Omega$ and $v_{i}, w_{j} \in \mathbb{L}_{\sigma}$.
In this case we write $\left.\alpha^{\prime}\right|_{\sigma}=\left.\alpha^{\prime \prime}\right|_{\sigma}$. If $\alpha \in A^{p, q}(\Omega)$ is given by $\alpha^{\prime} \in A^{p, q}(V)$, write $\left.\alpha^{\prime}\right|_{\Omega}=\alpha$.

3.3. Remark.

i.) The definition of $\wedge, d, d^{\prime}, d^{\prime \prime}$ on superforms on \mathbb{R}^{r} carries over to superforms on polyhedral complexes.
ii.) Let $F: \mathbb{R}^{r^{\prime}} \rightarrow \mathbb{R}^{r}$ be an affine map $F(x)=f(x)+a$ with $F\left(\left|\mathscr{C}^{\prime}\right|\right) \subseteq|\mathscr{C}|$ for polyhedral complexes $\mathscr{C}^{\prime} \subseteq \mathbb{R}^{r^{\prime}}$ and $\mathscr{C} \subseteq \mathbb{R}^{r}$. Then we have $f\left(\mathbb{L}_{\sigma^{\prime}}\right) \subseteq \mathbb{L}_{\sigma}$ for all $\sigma^{\prime} \in \mathscr{C}^{\prime}$ with $F\left(\sigma^{\prime}\right) \subseteq \sigma$ for some $\sigma \in \mathscr{C}$, after passing to some subdivision if necessary. Hence the pullback in Remark 2.4 carries over to a pullback $F^{*}: A^{p, q}(\mathscr{C}) \rightarrow A^{p, q}\left(\mathscr{C}^{\prime}\right)$.

4. Moment Maps and Tropical Charts

In this and the following section, K is an algebraically closed and complete field endowed with a nontrivial non-Archimedean absolute value $|\cdot|_{K}$ (sometimes we just write $|\cdot|$). In particular the residue field \tilde{K} is also algebraically closed. Let $\nu:=-\log |\cdot|$ be the associated valuation and $\Gamma:=\nu\left(K^{*}\right) \subset \mathbb{R}$ its value group. Note that Γ is a divisible, dense subgroup of \mathbb{R}.

Also in the following let X always be an algebraic variety over K, i.e. an integral (\Longleftrightarrow reduced and irreducible), separated K-scheme of finite type. Furthermore note that any open subscheme of X is an algebraic variety again.
4.1. Remark (Analytification). We recall that the topological space of the analytification $X^{\text {an }}$ of X is the space of all pairs $\left(\mathfrak{p}, p=|\cdot|_{p}\right)$, where $\mathfrak{p} \in X$ and $|\cdot|_{p}$ is an absolute value on the field $\kappa(\mathfrak{p})=\mathcal{O}_{X, \mathfrak{p}} / \mathfrak{m}_{X, \mathfrak{p}}$ which induces $|\cdot|$ on K. The space $X^{\text {an }}$ is endowed with the coarsest topology, such that the map

$$
\pi=\text { ker }: X^{\text {an }} \rightarrow X, \quad\left(\mathfrak{p}, p=|\cdot|_{p}\right) \mapsto \mathfrak{p}
$$

is continuous and such that for each Zariski open subset U in X and each $f \in$ $\mathcal{O}_{X}(U)$ the map

$$
\pi^{-1}(U) \rightarrow \mathbb{R}, \quad\left(\mathfrak{p}, p=|\cdot|_{p}\right) \mapsto|f(p)|:=|f(\mathfrak{p})|_{p}
$$

is continuous.
Furthermore note that if X is affine, X^{an} is exactly the space of multiplicative seminorms extending $|\cdot|_{K}$ endowed with the usual topology.

A morphism of varieties $\varphi: X \rightarrow Y$ induces a morphism on the analytifications $\varphi^{\text {an }}: X^{\mathrm{an}} \rightarrow Y^{\text {an }}$. On topological spaces, this is given locally by precomposing with $\varphi^{\#}$, i.e. if $\mathfrak{q}=\varphi(\mathfrak{p})$ for some $\mathfrak{p} \in X$, a pair $\left(\mathfrak{p},|\cdot|_{p}\right)$ maps to $\left(\mathfrak{q},|\cdot|_{q}\right)$, where $|\cdot|_{q}$ is obtained by

$$
\mathcal{O}_{Y, \mathfrak{q}} / \mathfrak{m}_{Y, \mathfrak{q}} \xrightarrow{\varphi_{1}^{\#}} \mathcal{O}_{X, \mathfrak{p}} / \mathfrak{m}_{X, \mathfrak{p}} \xrightarrow{|\cdot|_{p}} \mathbb{R}_{\geq 0} .
$$

In the affine case $\varphi: X=\operatorname{Spec}(B) \rightarrow Y=\operatorname{Spec}(A)$ with $\varphi=\operatorname{Spec}(f: A \rightarrow B)$, $X^{\text {an }}$ (respectively $Y^{\text {an }}$) can be seen as the set of multiplicative seminorms on B (respectively A) extending $|\cdot|_{K}$ and on topological spaces we have

$$
\begin{gathered}
\varphi^{\mathrm{an}}: X^{\mathrm{an}} \rightarrow Y^{\mathrm{an}} \\
|\cdot|_{p} \mapsto\left[a \mapsto|f(a)|_{p}\right] .
\end{gathered}
$$

4.2. Definition. We write $T=\mathbb{G}_{m}^{r}=\operatorname{Spec}\left(K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]\right)$ for the split multiplicative torus of rank r with coordinates T_{1}, \ldots, T_{r}. Recall that T is an affine algebraic variety via $T \cong \operatorname{Spec}\left(K\left[T_{1}, \ldots, T_{r}, S_{1}, \ldots, S_{r}\right] /\left(T_{1} S_{1}-1, \ldots, T_{r} S_{r}-1\right)\right)$.
i.) We define the tropicalization map

$$
\text { trop: } T^{\text {an }} \rightarrow \mathbb{R}^{r}, \quad p \mapsto\left(-\log \left|T_{1}(p)\right|, \ldots,-\log \left|T_{r}(p)\right|\right),
$$

which is clearly continuous.
ii.) For a closed subvariety Y of T, we call $\operatorname{Trop}(Y):=\operatorname{trop}\left(Y^{\mathrm{an}}\right)$ the tropical variety associated with Y.
4.3. Remark. For a closed subvariety Y of T of dimension n, the Bieri-GrovesTheorem says that $\operatorname{Trop}(Y)$ is a finite union of n-dimensional integral Γ-affine polyhedra in \mathbb{R}^{r}. In tropical geometry it is shown even further that $\operatorname{Trop}(Y)$ is an integral Γ-affine polyhedral complex. The structure of this complex is only determined up to subdivision, which does not matter for our constructions though.
4.4. Definition and Remark. Let U be an open subset of the algebraic variety X. A moment map is a morphism $\varphi: U \rightarrow T$ to some split split multiplicative torus $T=\mathbb{G}_{m}^{r}$. The tropicalization of φ is

$$
\varphi_{\text {trop }}:=\operatorname{trop} \circ \varphi^{\text {an }}: U^{\text {an }} \xrightarrow{\varphi_{\text {an }}} T^{\text {an }} \xrightarrow{\text { trop }} \mathbb{R}^{r} .
$$

This is a continuous map with respect to the topology on $U^{\text {an }}$.

Let $U^{\prime} \subseteq U$ be another open subset with moment map $\varphi^{\prime}: U^{\prime} \rightarrow T^{\prime}=\mathbb{G}_{m}^{r^{\prime}}$. We say that φ^{\prime} refines φ if there exists an affine morphism of tori $\psi: \mathbb{G}_{m}^{r^{\prime}} \rightarrow \mathbb{G}_{m}^{r}$, such that $\varphi=\psi \circ \varphi^{\prime}$ on U^{\prime}.

Here an affine morphism of tori stems from a group homomorphism $\mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r^{\prime}}$ composed with a (multiplicative) translation, i.e. it comes from a morphism

$$
\begin{aligned}
& K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right] \rightarrow K\left[T_{1}^{ \pm 1}, \ldots, T_{r^{\prime}}^{ \pm 1}\right] \\
& T_{i} \mapsto a_{i} T^{z_{i}}
\end{aligned}
$$

where $a_{i} \in K^{*}$ and $z_{i}=\left(z_{i, 1}, \ldots, z_{i, r^{\prime}}\right) \in \mathbb{Z}^{r^{\prime}}$ with $T^{z_{i}}:=T_{1}^{z_{i, 1}} \cdots T_{r^{\prime}}^{z_{i, r^{\prime}}}$.
Now in the situation of a refinement above let $x \in\left(U^{\prime}\right)^{\text {an }}$ and set $c:=\varphi^{\text {an }}(x) \in$ $T^{\text {an }}$ respectively $c^{\prime}:=\left(\varphi^{\prime}\right)^{\text {an }}(x) \in\left(T^{\prime}\right)^{\text {an }}$. The i-th component of $\varphi_{\text {trop }}(x)$ satisfies

$$
\begin{aligned}
& \varphi_{\text {trop }}(x)_{i}=-\log \left|T_{i}(c)\right|=-\log \left|T_{i}\left(\psi^{\text {an }}\left(c^{\prime}\right)\right)\right|=-\log \left|\psi\left(T_{i}\right)\left(c^{\prime}\right)\right|= \\
= & -\log \left|a_{i} T^{z_{i}}\left(c^{\prime}\right)\right|=-\log \left|a_{i}\right|+\sum_{j=1}^{r^{\prime}} z_{i, j}\left(-\log \left|T_{j}\left(c^{\prime}\right)\right|\right)=-\log \left|a_{i}\right|+\sum_{j=1}^{r^{\prime}} z_{i, j} \varphi_{\text {trop }}^{\prime}(x)_{j} .
\end{aligned}
$$

Hence we see that ψ induces an integral Γ-affine map $\operatorname{Trop}(\psi): \mathbb{R}^{r^{\prime}} \rightarrow \mathbb{R}^{r}$ such that $\varphi_{\text {trop }}=\operatorname{Trop}(\psi) \circ \varphi_{\text {trop }}^{\prime}$ on $\left(U^{\prime}\right)^{\text {an }}$.
4.5. Remark. If $\varphi_{i}: U_{i} \rightarrow \mathbb{G}_{m}^{r_{i}}$ are finitely many moment maps of nonempty open subsets U_{1}, \ldots, U_{n} of X, then $U:=\bigcap_{i} U_{i}$ is an open subset of X which is nonempty (because as variety, X is irreducible). Note that the fibre product $\prod_{i} \mathbb{G}_{m}^{r_{i}} \cong \operatorname{Spec}\left(\bigotimes_{i} K\left[T_{1}^{ \pm 1}, \ldots, T_{r_{i}}^{ \pm 1}\right]\right) \cong \mathbb{G}_{m}^{\sum_{i} r_{i}}$ is a split torus as well and the universal property of the product yields a morphism

$$
\varphi:=\varphi_{1} \times \cdots \times \varphi_{n}: U \rightarrow \mathbb{G}_{m}^{\sum_{i} r_{i}}
$$

which refines each φ_{i} via the canonical projection maps. Moreover the universal property of the fibre product immediately yields that for $U^{\prime} \subseteq U$ open every moment map $\varphi^{\prime}: U^{\prime} \rightarrow T^{\prime}$ which refines every φ_{i} also refines φ.
4.6. Lemma. Let $\varphi: U \rightarrow \mathbb{G}_{m}^{r}$ be a moment map on an open subset U of X and let U^{\prime} be a nonempty open subset of U. Then $\varphi_{\text {trop }}\left(\left(U^{\prime}\right)^{\text {an }}\right)=\varphi_{\text {trop }}\left(U^{\text {an }}\right)$.

Proof. [Gub16, Lemma 4.9].
4.7. Remark. Let $U \subseteq X$ be an open affine subset. We construct a canonical moment map φ_{U} as follows: By a generalization of Dirichlet's unit theorem the group $M_{U}:=\mathcal{O}_{X}(U)^{*} / K^{*}$ is free of finite rank. Choose representatives $\varphi_{1}, \ldots, \varphi_{r} \in \mathcal{O}_{X}(U)^{*}$ of a basis, and we obtain a map

$$
\begin{gathered}
K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right] \rightarrow \mathcal{O}_{X}(U) \\
T_{i} \mapsto \varphi_{i}
\end{gathered}
$$

which gives a moment map $\varphi_{U}: U \rightarrow \mathbb{G}_{m}^{r}=: T_{U}$. Note that this moment map is 'canonical' up to base change and multiplicative translation by elements of K^{*}.
4.8. Remark. Let $f: X^{\prime} \rightarrow X$ be morphism of algebraic varieties over K and let $U^{\prime} \subseteq X^{\prime}$ and $U \subseteq X$ be open subsets with $f\left(U^{\prime}\right) \subseteq U$. Denote by g the composition of morphisms of rings

$$
\mathcal{O}_{X}(U) \xrightarrow{f^{\#}(U)} \mathcal{O}_{X^{\prime}}(\underbrace{f^{-1}(U)}_{\supseteq U^{\prime}}) \xrightarrow{I_{U^{\prime}}} \mathcal{O}_{X^{\prime}}\left(U^{\prime}\right) .
$$

If $\varphi_{1}, \ldots, \varphi_{r} \in \mathcal{O}_{X}(U)^{*}$ (respectively $\varphi_{1}^{\prime}, \ldots, \varphi_{r^{\prime}}^{\prime}$) are lifts of a basis of M_{U} (respectively $M_{U^{\prime}}$), then $g\left(\varphi_{i}\right)=a_{i} \varphi^{\prime z_{i}}$ for $a_{i} \in K^{*}$ and $z_{i} \in \mathbb{Z}^{r^{\prime}}$. The morphism

$$
\begin{aligned}
& K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right] \rightarrow K\left[T_{1}^{ \pm 1}, \ldots, T_{r^{\prime}}^{ \pm 1}\right] \\
& T_{i} \mapsto a_{i} T^{z_{i}}
\end{aligned}
$$

gives rise to a morphism $\psi_{U, U^{\prime}}: \mathbb{G}_{m}^{r^{\prime}} \rightarrow \mathbb{G}_{m}^{r}$, satisfying

$$
\psi_{U, U^{\prime}} \circ \varphi_{U^{\prime}}=\varphi_{U} \circ f
$$

on U^{\prime} (to see equality note again that \mathbb{G}_{m}^{r} is affine, hence $\operatorname{Hom}_{\text {Sch }}\left(U, \mathbb{G}_{m}^{r}\right) \cong$ $\left.\operatorname{Hom}_{\text {Ring }}\left(K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right], \mathcal{O}_{X}(U)\right)\right)$.

In the case $X=X^{\prime}$ and $f=\mathrm{id}$, get affine morphism of tori $\psi_{U, U^{\prime}}: \mathbb{G}_{m}^{r^{\prime}} \rightarrow \mathbb{G}_{m}^{r}$ such that $\psi_{U, U^{\prime}} \circ \varphi_{U^{\prime}}=\varphi_{U}$ on U^{\prime}. Hence for an inclusion $U^{\prime} \subseteq U$ of open subsets in X, the canonical moment map $\varphi_{U^{\prime}}$ always refines φ_{U} in the sense of Definition 4.4.
4.9. Definition. An open subset U of is called very affine if U has a closed immersion into a split torus.
4.10. Remark. For an open affine subset $U \subseteq X$ the following properties are clearly equivalent:
i.) The canonical moment map φ_{U} is a closed embedding.
ii.) U is very affine.
iii.) $\mathcal{O}_{X}(U)$ is finitely generated as a K-algebra by $\mathcal{O}_{X}(U)^{*}$.

The following lemma shows that all local considerations can be done using very affine open subsets.
4.11. Lemma. Let X be an algebraic variety.
i.) The intersection of two very affine subsets $U \hookrightarrow \mathbb{G}_{m}^{r}, U^{\prime} \hookrightarrow \mathbb{G}_{m}^{r^{\prime}}$ of X is very affine again.
ii.) The very affine open subsets of X form a basis for the Zariski topology.

Proof. i.) As X is separated, the intersection of two affine subsets $U \cap U^{\prime}$ is affine again and the canonical map $U \cap U^{\prime} \rightarrow U \times U^{\prime}$ is a closed immersion. The natural map $\varphi \times \varphi^{\prime}: U \times U^{\prime} \rightarrow \mathbb{G}_{m}^{r} \times \mathbb{G}_{m}^{r^{\prime}} \cong \mathbb{G}_{m}^{r+r^{\prime}}$ is also a closed immersion, as the corresponding map on the tensor products is surjective. Hence $U \cap U^{\prime} \rightarrow \mathbb{G}_{m}^{r+r^{\prime}}$ is a closed immersion.
ii.) Let $x \in X$ and $U \subseteq X$ be open neighborhood of x. It suffices to show that there is very affine open V around x with $V \subseteq U$. As open subschemes of varieties are varieties again, and by possibly passing to a smaller open neighborhood, we can assume that U is affine with $U=\operatorname{Spec}(A)$, where A is a K-algebra of finite type, i.e. it is of the form $A=K\left[T_{1}, \ldots, T_{n}\right] / \mathfrak{a}$ for some ideal \mathfrak{a}. Let \mathfrak{p} denote the prime ideal of A corresponding to x and \bar{T}_{i} the class of T_{i} in A. Consider the elements $f_{1}, \ldots, f_{n} \in A$ with

$$
f_{i}=\left\{\begin{array}{l}
\overline{T_{i}}, \text { if } \overline{T_{i}} \neq \mathfrak{p} \\
\overline{T_{i}}+1, \text { if } \overline{T_{i}} \in \mathfrak{p}
\end{array} .\right.
$$

Then $V:=D\left(f_{1}\right) \cap \cdots \cap D\left(f_{n}\right)=D\left(f_{1} \cdots f_{n}\right) \subseteq U=\operatorname{Spec}(A)$ is open around x and corresponds to localization $A\left[\frac{1}{f_{1} \cdots f_{n}}\right]$. We obtain a surjective K-algebra morphism

$$
\begin{aligned}
K\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right] & \rightarrow A\left[\frac{1}{f_{1} \cdots f_{n}}\right] \\
T_{i} & \rightarrow f_{i}
\end{aligned}
$$

which gives closed immersion $V \hookrightarrow \mathbb{G}_{m}^{n}$.
4.12. Remark. On a very affine open subset, we will always use the canonical moment map $\varphi_{U}: U \rightarrow T_{U}:=\mathbb{G}_{m}^{r}$, which is a closed immersion by Remark 4.10. We write $\operatorname{Trop}(U):=\operatorname{Trop}\left(\varphi_{U}(U)\right) \subseteq \mathbb{R}^{r}$ for the tropical variety of U in T_{U}. For the tropicalization map we briefly write $\operatorname{trop}_{U}:=\left(\varphi_{U}\right)_{\text {trop }}: U^{\text {an }} \rightarrow \mathbb{R}^{r}$. Recall that φ_{U} is only determined up to multiplicative translation and change of basis. Hence by Definition 4.4, trop_{U} and $\operatorname{Trop}(U)$ are only canonical up to affine translation.

4.13. Definition.

i.) A tropical chart $\left(V, \varphi_{U}\right)$ on $X^{\text {an }}$ consists of an open subset V of $X^{\text {an }}$ contained in $U^{\text {an }}$ for a very affine open subset U of X with $V=\operatorname{trop}_{U}^{-1}(\Omega)$ for some open subset Ω of $\operatorname{Trop}(U)$. Note that $\operatorname{trop}_{U}(V)=\Omega$.
ii.) A tropical chart $\left(V^{\prime}, \varphi_{U^{\prime}}\right)$ is called a tropical subchart of $\left(V, \varphi_{U}\right)$ if $V^{\prime} \subseteq V$ and $U^{\prime} \subseteq U$.
4.14. Remark. Note that the analytification of morphisms preserves immersions, i.e. if $U \subseteq U^{\prime}$ as subschemes, then $U^{\text {an }} \subseteq\left(U^{\prime}\right)^{\text {an }}$. Hence we can talk about inclusions $\left(U^{\prime}\right)^{\text {an }} \subseteq U^{\text {an }} \subseteq X^{\text {an }}$ as in the definition above and about intersections as below.
4.15. Remark. Let $\left(V^{\prime}, \varphi_{U^{\prime}}\right)$ be a tropical subchart of $\left(V, \varphi_{U}\right)$ with $V^{\prime}=\operatorname{trop}_{U^{\prime}}^{-1}\left(\Omega^{\prime}\right)$ respectively $V=\operatorname{trop}_{U}^{-1}(\Omega)$ as above. By Remark $4.8 \varphi_{U^{\prime}}$ refines φ_{U} and there exists affine morphism $\psi_{U, U^{\prime}}$ such that $\psi_{U, U^{\prime}} \circ \varphi_{U^{\prime}}=\varphi_{U}$ on U^{\prime} and hence trop $_{U}=$ $\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right) \circ \operatorname{trop}_{U^{\prime}}$ on $\left(U^{\prime}\right)^{\text {an }}$. Obtain

$$
\begin{gathered}
\operatorname{Trop}(U)=\operatorname{trop}_{U}\left(U^{\mathrm{an}}\right) \stackrel{\text { 4.6. }}{=} \operatorname{trop}_{U}\left(\left(U^{\prime}\right)^{\mathrm{an}}\right)= \\
=\left(\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right) \circ \operatorname{trop}_{U^{\prime}}\right)\left(\left(U^{\prime}\right)^{\mathrm{an}}\right)=\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)\left(\operatorname{Trop}\left(U^{\prime}\right)\right) .
\end{gathered}
$$

Hence $\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)$ restricts to a surjective affine map of supports of polyhedral complexes

$$
\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right): \operatorname{Trop}\left(U^{\prime}\right) \rightarrow \operatorname{Trop}(U)
$$

Furthermore this yields

$$
\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)\left(\Omega^{\prime}\right)=\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)\left(\operatorname{trop}_{U^{\prime}}\left(V^{\prime}\right)\right)=\operatorname{trop}_{U}(\underbrace{V^{\prime}}_{\subseteq V}) \subseteq \Omega
$$

4.16. Proposition. The tropical charts on $X^{\text {an }}$ have the following properties:
i.) For every open subset $W \subseteq X^{\text {an }}$ and every $x \in W$ there exists a tropical chart $\left(V, \varphi_{U}\right)$ with $x \in V \subseteq W$. Furthermore, V can be chosen such that $\operatorname{trop}_{U}(V)$ is relatively compact in $\operatorname{Trop}(U)$.
ii.) The intersection $\left(V \cap V^{\prime}, \varphi_{U \cap U^{\prime}}\right)$ of tropical charts $\left(V, \varphi_{U}\right)$ and $\left(V^{\prime}, \varphi_{U^{\prime}}\right)$ is a tropical subchart of both.
iii.) If $\left(V, \varphi_{U}\right)$ is a tropical chart and if $U^{\prime \prime}$ is a very affine open subset of U with $V \subseteq\left(U^{\prime \prime}\right)^{\text {an }}$, then $\left(V, \varphi_{U^{\prime \prime}}\right)$ is a tropical subchart of $\left(V, \varphi_{U}\right)$.
Proof. i.) As the very affine open subsets form a basis of the Zariski topology on X and $X^{\text {an }}$ can be obtained by glueing, we may assume that $X=\operatorname{Spec}(A)$ is a very affine scheme. A basis of $X^{\text {an }}$ is formed by subsets of the form $V:=\left\{x \in X^{\text {an }}\left|s_{1}<\left|f_{1}(x)\right|<r_{1}, \ldots, s_{k}<\left|f_{k}(x)\right|<r_{k}\right\}\right.$ with all $f_{i} \in A$ and real numbers $s_{i}<r_{i}$. We can even assume that all $s_{i}>0$. Indeed, let $r>0$. As $\left|K^{*}\right|$ lies dense in $\mathbb{R}_{\geq 0}$, we can find a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in K^{*}, such that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ and all $\left|a_{n}\right|<r$, and it is easy to check using the ultrametric triangle inequality that

$$
\left\{x \in X^{\mathrm{an}}| | f(x) \mid \in[0, r)\right\}=\bigcup_{i \in \mathbb{N}}\left\{x \in X^{\mathrm{an}}| |\left(f+a_{i}\right)(x) \left\lvert\, \in\left(\frac{\left|a_{i}\right|}{2}, r\right)\right.\right\}
$$

for any $f \in A$.
Now any V of such a form lies in the analytification of the very affine open subset $U:=\left\{x \in X \mid f_{1}(x) \neq 0, \ldots, f_{k}(x) \neq 0\right\}$. In order to show that $\left(V, \varphi_{U}\right)$ is a tropical chart, it remains to show that $V=\operatorname{trop}_{U}^{-1}(\Omega)$ for some
open subset Ω of $\operatorname{Trop}(U)$.
For this, let $g_{1}, \ldots, g_{n} \in \mathcal{O}_{X}(U)^{*}=A\left[\frac{1}{f_{1} \cdots f_{k}}\right]^{*}$ be lifts of a basis of $\mathcal{O}_{X}(U)^{*} / K^{*}$. We can assume without loss of generality that φ_{U} is given by the map

$$
\psi: K\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right] \rightarrow \mathcal{O}_{X}(U), \quad T_{i} \mapsto g_{i}
$$

For any $j \in\{1, \ldots, k\}$, there are $a_{j} \in K^{*}$ and $z_{j} \in \mathbb{Z}^{n}$, such that $f_{j}=$ $a_{j} \cdot g^{z_{j}}=\psi\left(a_{j} T^{z_{j}}\right)$.

Note that $\operatorname{trop}_{U}(x)=\left(-\log \left(\left|g_{1}(x)\right|\right), \ldots,-\log \left(\left|g_{n}(x)\right|\right)\right)$ for any $x \in U^{\text {an }}$ and consider for any $j \in\{1, \ldots, k\}$ the continuous map

$$
\begin{aligned}
& \alpha_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
&\left(y_{1}, \ldots, y_{n}\right) \mapsto\left|a_{j}\right| \cdot \exp \left(-\sum_{i=1}^{n} z_{j, i} y_{i}\right) .
\end{aligned}
$$

See easily that

$$
\left|f_{j}(x)\right| \in\left(s_{j}, r_{j}\right) \Longleftrightarrow \alpha_{j} \circ \operatorname{trop}_{U}(x) \in\left(s_{j}, r_{j}\right)
$$

for all $j \in\{1, \ldots, k\}$ and $x \in U^{\text {an }}$.

$$
\text { Hence } V=\operatorname{trop}_{U}^{-1}(\underbrace{\bigcap_{j=1}^{k} \alpha_{j}^{-1}\left(s_{j}, r_{j}\right)}_{=: \Omega \text { open }}) \text {. }
$$

Furthermore $\operatorname{trop}_{U}(V)$ is relatively compact, as Ω is clearly bounded, hence its closure is compact.
ii.) Let $\left(V, \varphi_{U}: U \rightarrow \mathbb{G}_{m}^{r}\right)$ respectively $\left(V^{\prime}, \varphi_{U^{\prime}}: U^{\prime} \rightarrow \mathbb{G}_{m}^{r^{\prime}}\right)$ be tropical charts with $\Omega=\operatorname{trop}_{U}(V)$ respectively $\Omega^{\prime}=\operatorname{trop}_{U^{\prime}}\left(V^{\prime}\right)$ open subsets in $\operatorname{Trop}(U)$ respectively $\operatorname{Trop}\left(U^{\prime}\right)$. By Lemma 4.11 the intersection $U \cap U^{\prime}$ is very affine via closed embedding

$$
\Phi: U \cap U^{\prime} \xrightarrow{\alpha} U \times U^{\prime} \xrightarrow{\varphi_{U} \times \varphi_{U}{ }^{\prime}} \mathbb{G}_{m}^{r} \times \mathbb{G}_{m}^{r^{\prime}} \cong \mathbb{G}_{m}^{r+r^{\prime}}
$$

Here α is the closed immersion coming from the canonical surjective map $\mathcal{O}_{X}(U) \otimes_{K} \mathcal{O}_{X}\left(U^{\prime}\right) \rightarrow \mathcal{O}_{X}\left(U \cap U^{\prime}\right)$ (X is separated, hence intersections of affines are affine). Now consider the following diagram of the underlying topological spaces of analytifications:

The commutativity of the diagram is clear except for subdiagrams (1) and (2). Show commutativity of (1) (analogously for (2)): Let $x \in\left(\mathbb{G}_{m}^{r^{\prime}} \times \mathbb{G}_{m}^{r}\right)^{\text {an }}$, i.e. via the isomorphism as in Remark 4.5 a multiplicative seminorm in $\operatorname{Spec}\left(K\left[S_{1}^{ \pm 1}, \ldots S_{r^{\prime}}^{ \pm 1}, T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]\right)$. As $\pi_{r}^{\text {an }}(x)$ is the precomposition of x with
$K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right] \rightarrow K\left[S_{1}^{ \pm 1}, \ldots S_{r^{\prime}}^{ \pm 1}\right] \otimes_{K} K\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right] \rightarrow K\left[S_{1}^{ \pm 1}, \ldots S_{r^{\prime}}^{ \pm 1}, T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]$
we see that $\left|T_{i}\left(\pi_{r}^{\mathrm{an}}(x)\right)\right|=\left|T_{i}(x)\right|$. Then

$$
\operatorname{proj} \circ \operatorname{trop}(x)=\left(-\log \left|T_{1}(x)\right|, \ldots,-\log \left|T_{r}(x)\right|\right)=\operatorname{trop} \circ \pi_{r}^{\mathrm{an}}(x) .
$$

Hence the whole diagram commutes. The diagram yields immediately that the set $\Omega^{\prime \prime}:=\Phi_{\text {trop }}\left(\left(U \cap U^{\prime}\right)^{\text {an }}\right) \cap\left(\Omega \times \Omega^{\prime}\right) \subseteq \mathbb{R}^{r+r^{\prime}}$ is an open subset of $\Phi_{\text {trop }}\left(\left(U \cap U^{\prime}\right)^{\text {an }}\right)$. Furthermore $\Phi_{\text {trop }}^{-1}\left(\Omega^{\prime \prime}\right)=V \cap V^{\prime}$. As $\varphi_{U \cap U^{\prime}}$ refines Φ, we obtain affine map $\operatorname{Trop}(\psi)$ as in 4.4 such that

$$
\Phi_{\text {trop }}=\operatorname{Trop}(\psi) \circ \operatorname{trop}_{U \cap U^{\prime}}
$$

on $\left(U \cap U^{\prime}\right)^{\text {an }}$ which immediately yields that

$$
\Omega^{\prime \prime \prime}:=\operatorname{Trop}(\psi)^{-1}\left(\Omega^{\prime \prime}\right) \cap \operatorname{Trop}\left(U \cap U^{\prime}\right)
$$

is an open subset of $\operatorname{Trop}\left(U \cap U^{\prime}\right)$ with $V \cap V^{\prime}=\operatorname{trop}_{U \cap U^{\prime}}^{-1}\left(\Omega^{\prime \prime \prime}\right)$.
iii.) We need to show that $V=\operatorname{trop}_{U^{\prime \prime}}^{-1}\left(\Omega^{\prime \prime}\right)$ for some open $\Omega^{\prime \prime}$ in $\operatorname{Trop}\left(U^{\prime \prime}\right)$. As $\varphi_{U^{\prime \prime}}$ refines φ_{U}, let as above $\operatorname{Trop}(\psi)$ be the affine map with $\operatorname{trop}_{U}=$ $\operatorname{Trop}(\psi) \circ \operatorname{trop}_{U^{\prime \prime}}$ on $\left(U^{\prime \prime}\right)^{\text {an }}$. As $\left(V, \varphi_{U}\right)$ is tropical chart, let $\Omega:=\operatorname{trop}_{U}(V)$ be the corresponding open subset of $\operatorname{Trop}(U)$ with $V=\operatorname{trop}_{U}^{-1}(\Omega)$. From $V \subseteq\left(U^{\prime \prime}\right)^{\text {an }}$ we get as in ii.) that $V=\operatorname{trop}_{U^{\prime \prime}}^{-1}\left(\Omega^{\prime \prime}\right)$ for the open subset $\Omega^{\prime \prime}:=\operatorname{Trop}(\psi)^{-1}(\Omega) \cap \operatorname{Trop}\left(U^{\prime \prime}\right)$.

5. Differential Forms on Algebraic Varieties

5.1. Recollection. A tropical chart $\left(V, \varphi_{U}\right)$ consists of an open subset V of $U^{\text {an }}$ for a very affine open subset U of X such that $V=\operatorname{trop}_{U}^{-1}(\Omega)$ for some open subset $\Omega=\operatorname{trop}_{U}(V)$ of $\operatorname{Trop}(U)$. Here $\varphi_{U}: U \rightarrow \mathbb{G}_{m}^{r}$ is the canonical moment map. For such a moment map we shortly write $T_{U}:=\mathbb{G}_{m}^{r}$ and $\mathbb{R}_{U}:=\mathbb{R}^{r}$ (i.e. omit the ' r ').

The tropical variety $\operatorname{Trop}(U)$ is the support of a polyhedral complex in \mathbb{R}_{U} via the tropicalization map $\operatorname{trop}_{U}: U^{\text {an }} \rightarrow \mathbb{R}_{U}$. The canonical map φ_{U} is only determined up to affine morphism of tori (see Remark 4.4), hence all tropical constructions are canonical up to integral Γ-affine isomorphism.

For a tropical subchart $\left(V^{\prime}, \varphi_{U^{\prime}}\right) \subseteq\left(V, \varphi_{U}\right)$ there is an affine morphism $\psi_{U, U^{\prime}}: T_{U^{\prime}} \rightarrow$ T_{U} with $\varphi_{U}=\psi_{U, U^{\prime}} \circ \varphi_{U^{\prime}}$ on U^{\prime}.
The induced integral Γ-affine map $\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right): \mathbb{R}_{U^{\prime}} \rightarrow \mathbb{R}_{U}$ surjectively maps $\operatorname{Trop}\left(U^{\prime}\right)$ onto $\operatorname{Trop}(U)($ see Remark 4.15$)$ with $\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)\left(\operatorname{trop}_{U^{\prime}}\left(V^{\prime}\right)\right) \subseteq \operatorname{trop}_{U}(V)$.
5.2. Definition. Consider the situation as above. We define the restriction of a superform $\alpha \in A_{\operatorname{Trop}(U)}^{p, q}(\Omega)$ to a superform on $\Omega^{\prime}:=\operatorname{trop}_{U^{\prime}}\left(V^{\prime}\right)$ by

$$
\left.\alpha\right|_{V^{\prime}}:=\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right)^{*} \alpha \in A_{\operatorname{Trop}\left(U^{\prime}\right)}^{p, q}\left(\Omega^{\prime}\right)
$$

5.3. Remark. For tropical subcharts $\left(\tilde{V}, \varphi_{\tilde{U}}\right) \subset\left(V^{\prime}, \varphi_{U^{\prime}}\right) \subset\left(V, \varphi_{U}\right)$ and $\alpha \in$ $A_{\operatorname{Trop}(U)}^{p, q}(\Omega)$, note that

$$
\operatorname{Trop}\left(\psi_{U, \tilde{U}}\right)=\operatorname{Trop}\left(\psi_{U, U^{\prime}}\right) \circ \operatorname{Trop}\left(\psi_{U^{\prime}, \tilde{U}}\right)
$$

hence

$$
\left.\left(\left.\alpha\right|_{V^{\prime}}\right)\right|_{\tilde{V}}=\left.\alpha\right|_{\tilde{V}}
$$

5.4. Definition.

i.) A differential form α of bidegree (p, q) on an open subset V of $X^{\text {an }}$ is given by a family $\left\{\left(V_{i}, \varphi_{U_{i}}, \alpha_{i}\right)\right\}_{i \in I}$ such that
a.) For all $i \in I$ the pair $\left(V_{i}, \varphi_{U_{i}}\right)$ is a tropical chart of $X^{\text {an }}$ and $\bigcup_{i \in I} V_{i}=V$.
b.) For all $i \in I$ we have $\alpha_{i} \in A_{\operatorname{Trop}_{U_{i}}}^{p, q}\left(\Omega_{i}\right)$ with $\Omega_{i}=\operatorname{trop}_{U_{i}}\left(V_{i}\right)$.
c.) All α_{i} agree on intersections, that is for all $(i, j) \in I^{2}$ we have

$$
\left.\alpha_{i}\right|_{V_{i} \cap V_{j}}=\left.\alpha_{j}\right|_{V_{i} \cap V_{j}} \in A_{\operatorname{Trop}\left(U_{i} \cap U_{j}\right)}^{p, q}\left(\operatorname{trop}_{U_{i} \cap U_{j}}\left(V_{i} \cap V_{j}\right)\right) .
$$

ii.) If $\alpha^{\prime}=\left\{\left(V_{i}^{\prime}, \varphi_{U_{i}^{\prime}}^{\prime}, \alpha_{i}^{\prime}\right)\right\}_{i \in I^{\prime}}$ is another differential form on V, then we consider α and α^{\prime} as the same differential form if and only if

$$
\left.\alpha_{i}\right|_{V_{i} \cap V_{j}^{\prime}}=\left.\alpha_{j}^{\prime}\right|_{V_{i} \cap V_{j}^{\prime}}
$$

for all $(i, j) \in I \times I^{\prime}$.
iii.) We denote the space of (p, q)-differential forms on V by $A^{p, q}(V)$.
iv.) For $\left(V_{i}, \varphi_{U_{i}}, \alpha_{i}\right)$ we define the differential operator

$$
\begin{gathered}
d^{\prime}: A^{p, q}(V) \rightarrow A^{p+1, q}(V) \\
d^{\prime} \alpha:=\left(V_{i}, \varphi_{U_{i}}, d^{\prime} \alpha_{i}\right) .
\end{gathered}
$$

Analogously for $d^{\prime \prime}, d$ and the wedge product \wedge.
5.5. Lemma. Let $\alpha \in A^{p, q}(V)$ be given by one canonical tropical chart ($V, \varphi_{U}, \alpha^{\prime}$) and assume there exist tropical subcharts $\left\{\left(V_{i}, \varphi_{U_{i}}\right)\right\}_{i \in I}$ of $\left(V, \varphi_{U}\right)$ such that $\left.\alpha^{\prime}\right|_{V_{i}}=0$ for all $i \in I$. Then already $\alpha^{\prime}=0$.

Proof. Jel216, Lemma 3.2.12].
5.6. Corollary. Let $V \subseteq X^{\text {an }}$ be an open subset and let $\alpha=\left(V_{i}, \varphi_{U_{i}}, \alpha_{i}\right)$ and $\alpha^{\prime}=\left(V_{j}^{\prime}, \varphi_{U_{j}^{\prime}}, \alpha_{j}^{\prime}\right)$ be two differential forms on V. Suppose there are tropical subcharts $\left(W_{i j l}, \varphi_{\tilde{U}_{i j l}}\right)$ of $\left(V_{i} \cap V_{j}^{\prime}, \varphi_{U_{i} \cap U_{j}^{\prime}}\right)$ for all i, j such that $V_{i} \cap V_{j}^{\prime}=\bigcup_{i j l} W_{i j l}$ with

$$
\left.\left(\left.\alpha_{i}\right|_{V_{i} \cap V_{j}^{\prime}}\right)\right|_{W_{i j l}}=\left.\left(\alpha_{j}^{\prime} \mid V_{i} \cap V_{j}^{\prime}\right)\right|_{W_{i j l}}
$$

for all l. Then $\alpha=\alpha^{\prime}$.

5.7. Remark.

i.) Let $W \subseteq V$ be an inclusion of open subsets in $X^{\text {an }}$ and $\alpha=\left\{\left(V_{i}, \varphi_{U_{i}}, \alpha_{i}\right)\right\}_{i \in I} \in$ $A^{p, q}(V)$. By Proposition 4.16 we can choose tropical charts $\left\{\left(W_{j}, \varphi_{U_{j}^{\prime}}\right)\right\}_{j \in J}$ such that $\bigcup_{j \in J} W_{j}=W$ and for all $j \in J$ there is an $i(j) \in I$ with $W_{j} \subseteq V_{i(j)}$ and $U_{j}^{\prime} \subseteq U_{i(j)}$. We then have a natural restriction map

$$
\left.\alpha\right|_{W}:=\left(W_{j}, \varphi_{U_{j}^{\prime}},\left.\alpha_{i(j)}\right|_{W_{j}}\right) \in A^{p, q}(W)
$$

which is well-defined, as it is independent of the choice of tropical charts above.

Indeed, let $\left\{\left(\tilde{W}_{k}, \varphi_{\tilde{U}_{k}}\right)\right\}_{k \in K}$ be another cover of W as above and let $\beta:=$ $\left\{\left(W_{j}, \varphi_{U_{j}^{\prime}},\left.\alpha_{i(j)}\right|_{W_{j}}\right)\right\}_{j \in J}$ and $\gamma:=\left\{\left(\tilde{W}_{k}, \varphi_{\tilde{U}_{k}},\left.\alpha_{i(k)}\right|_{\tilde{W}_{k}}\right)\right\}_{k \in K}$. Then for any $(j, k) \in J \times K$ have $W_{j} \cap \tilde{W}_{k} \subseteq V_{i(j)} \cap V_{i(k)}$ and hence

$$
\begin{array}{rlrl}
\left.\beta_{j}\right|_{W_{j} \cap \tilde{W}_{k}}=\left.\left(\alpha_{i(j)} \mid W_{j}\right)\right|_{W_{j} \cap \tilde{W}_{k}} & =\left.\alpha_{i(j)}\right|_{W_{j} \cap \tilde{W}_{k}} & =\left.\left(\left.\alpha_{i(j)}\right|_{V_{i(j)} \cap V_{i(k)}}\right)\right|_{W_{j} \cap \tilde{W}_{k}} \\
=\left.\left(\alpha_{i(k)} \mid V_{i(j)} \cap V_{i(k)}\right)\right|_{W_{j} \cap \tilde{W}_{k}} & =\left.\alpha_{i(k)}\right|_{W_{j} \cap \tilde{W}_{k}} & =\left(\left.\left.\alpha_{i(k)}\right|_{\tilde{W}_{k}}\right|_{W_{j} \cap \tilde{W}_{k}}\right. \\
& =\left.\gamma_{k}\right|_{W_{j} \cap \tilde{W}_{k}} .
\end{array}
$$

ii.) With the restriction map the differential forms define a presheaf $A^{p, q}(\bullet)$ on $X^{\text {an }}$ by

$$
V \mapsto A^{p, q}(V)
$$

Using i.) and Corollary 5.6, we obtain that $A^{p, q}(\bullet)$ is a sheaf.
5.8. Theorem ($d^{\prime \prime}$-Poincaré Lemma). Let $V \subseteq X^{\text {an }}$ be an open subset. Let $x \in V$ and $\alpha \in A^{p, q}(V)$ with $q>0$ and $d^{\prime \prime} \alpha=0$. Then there exists some open $W \subseteq V$ with $x \in W$ and some $\beta \in A^{p, q-1}(W)$ such that $d^{\prime \prime} \beta=\left.\alpha\right|_{W}$.
Proof. [Jel16, Theorem 4.5].

References

[Ber90] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, Vol. 33. American Mathematical Society, Providence, RI, 1990.
[Gub12] Walter Gubler. A guide to tropicalizations. In Algebraic and combinatorial aspects of tropical geometry, Contemporary Mathematics, Vol. 589, pages 125-189. American Mathematical Society, Providence, RI, 2013.
[Gub16] Walter Gubler. Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros). In Nonarchimedean and tropical geometry, Simons Symp., pages 1-30. Springer, 2016.
[Jel16] Philipp Jell. A Poincaré lemma for real-valued differential forms on Berkovich spaces. Math. Z., 282(3-4):1149-1167, 2016.
[Jel216] Philipp Jell. Real-valued differential forms on Berkovich analytic spaces and their cohomology. Dissertation, Universität Regensburg.

