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1. Introduction

1.1. Motivated by (p, q)-forms in complex analytic geometry, we will define in
this lecture the space Ap,q(U) of superforms of bidegree (p, q) on an open sub-
set U ⊆ Rr. These superforms can be restricted to the support of polyhedral
complexes in Rr. By the Bieri-Groves-Theorem, a closed subscheme of the split
torus Spec(K[T±1

1 , . . . , T±1
r ]) maps to the support of a polyhedral complex in Rr.

We want to use this connection to define differential forms on the analytification
Xan of an algebraic variety X over some algebraically closed field K. For this
we introduce the notion of very affine open subsets, i.e. open affine subsets of
X which embed as closed subschemes into some split torus. These form a basis
for the Zariski topology on X. We will then see that any open subset V of Xan

can be covered by open subsets of very affine open subsets which behave well
with respect to the tropical coordinates. This notion then allows us to define
differential forms on Xan, with an associated sheaf.

1.2. Let N be a free abelian group of rank r with dual abelian group M :=
Hom(N,Z) and associated real vector spaces NR := N ⊗Z R respectively MR of
dimension r. The choice of a Z-basis of N induces isomorphisms N ∼= Zr, NR ∼=
Rr,MR ∼= Rr∗ and leads to coordinates x1, . . . , xr on NR. Our following construc-
tions will only depend on the underlying integral R-affine structures and not on
the choice of coordinates. Here an integral R-affine space is a real affine space
whose underlying vector space comes with a lattice. Hence we restrict ourselves
to the case N = Zr with standard basis e1, . . . , er. Note that in subsequent sec-
tions in the general case the algebraic torus Spec(K[N ]) with character group N
takes the role of the torus Spec(K[T±1

1 , . . . , T±1
r ]) of rank r.

2. Superforms on Rr

2.1. Definition.

i.) For an open subset U ⊆ Rr we denote by Ap(U) the space of smooth real
differential forms of degree p. We define the space of superforms of bidegree
(p, q) on U as

Ap,q(U) := Ap(U)⊗C∞(U) A
q(U) = Ap(U)⊗R ΛqRr∗ = C∞(U)⊗R ΛpRr∗⊗R ΛqRr∗.

1



2

ii.) With choice of a basis x1, . . . , xr of Rr we can formally write a superform
α ∈ Ap,q(U) as

α =
∑

|I|=p,|J |=q

αIJd
′xI ∧ d′′xJ ,

where I = {i1, . . . , ip} respectively J = {j1, . . . , jq} are ordered subsets of
{1, . . . , r}, αIJ ∈ C∞(U) are smooth functions and

d′xI ∧ d′′xJ := (dxi1 ∧ · · · ∧ dxip)⊗R (dxj1 ∧ · · · ∧ dxjq).

iii.) We define the wedge product

Ap,q(U)× Ap′,q′(U)→ Ap+p
′,q+q′(U)

(α, β) 7→ α ∧ β

in coordinates as

α ∧ β :=

 ∑
|I|=p,|J |=q

αIJd
′xI ∧ d′′xJ

 ∧
 ∑
|K|=p′,|L|=q′

βKLd
′xK ∧ d′′xL


:= (−1)p

′q
∑

|I|=p,|J |=q,|K|=p′,|L|=q′
αIJβKLd

′xI ∧ d′xK ∧ d′′xJ ∧ d′′xL,

where d′xI ∧ d′xK ∈ Λp+p′Rr∗ respectively d′′xJ ∧ d′′xL ∈ Λq+q′Rr∗ is the
usual wedge product.

iv.) There is a differential operator

d′ : Ap,q(U) = Ap(U)⊗R ΛqRr∗ → Ap+1 ⊗R ΛqRr∗ = Ap+1,q(U)

given by D ⊗R id where D is the usual exterior derivative on Ap(U). Also
note that Ap,q = ΛpRr∗ ⊗R A

q(U), and we define a second operator d′′ :=
(−1)p · id⊗R D. In coordinates this gives

d′

 ∑
|I|=p,|J |=q

αIJd
′xI ∧ d′′xJ

 =
∑

|I|=p,|J |=q

r∑
i=1

∂αIJ
∂xi

d′xi ∧ d′xI ∧ d′′xJ

and

d′′

 ∑
|I|=p,|J |=q

αIJd
′xI ∧ d′′xJ

 = (−1)p
∑

|I|=p,|J |=q

r∑
i=1

∂αIJ
∂xi

d′xI ∧ d′′xi ∧ d′′xJ .

Finally define d := d′ + d′′.



3

2.2. Remark. As in differential geometry, we may view a superform

α =
n∑
i=1

αi ⊗ ωi ⊗ µi ∈ Ap,q(U) = C∞(U)⊗ ΛpRr∗ ⊗ ΛqRr∗

at a point x ∈ U as a multilinear map

Rp+q → R, (n1, . . . , np+q) 7→
n∑
i=1

αi(x)ωi(n1, . . . , np)µi(np+1, . . . , np+q)

which is alternating in (n1, . . . , np) and (np+1, . . . , np+q). We write 〈α(x);n1, . . . , np+q〉
for a superform α and such an evaluation at x ∈ U and n1, . . . , np+q ∈ Rr.

2.3. Remark.

i.) For superforms α respectively β of degree (p, q) respectively (p′, q′) one com-
putes easily the relations

d′(α ∧ β) = d′α ∧ β + (−1)p+qα ∧ d′β
and similarly

d′′(α ∧ β) = d′′α ∧ β + (−1)p+qα ∧ d′′β.
Hence the choice of sign in d′′.

ii.) Note that we have as usual d′(d′α) = 0 and d′′(d′′α) = 0, however in general
not d′(d′′α) = 0. Indeed, for R2 with coordinates x, y consider the superform
xy ∈ A0,0(R2) = C∞(R2). Then d′(d′′(xy)) = d′(yd′′x+ xd′′y) = d′y ∧ d′′x+
d′x ∧ d′′y 6= 0.

2.4. Remark.

i.) Let F : Rr′ → Rr with F (x) = f(x) + a be an affine map. Here f is the
corresponding linear map and a ∈ Rr. Furthermore let U ′ ⊆ Rr′ and U ⊆ Rr

with F (U ′) ⊆ U .
Note that f induces a map f ∗ : Rr∗ → Rr′∗ which again induces a map
f ∗ : ΛkRr∗ → ΛkRr′∗. In particular we obtain a well-defined pullback mor-
phism

F ∗ : Ap,q(U) = C∞(U)⊗R ΛpRr∗ ⊗R ΛqRr∗ → Ap,q(U ′)

g ⊗ ω ⊗ µ 7→ (g ◦ F )⊗ f ∗ω ⊗ f ∗µ.

ii.) Note that with the representation Ap,q(U) = Ap(U) ⊗R ΛqRr∗ the pullback
for an affine map F as above can be written as

F ∗ : Ap(U)⊗R ΛqRr∗ → Ap(U ′)⊗R ΛqRr′∗ω ⊗R µ 7→ F ∗ω ⊗R f
∗µ,

where F ∗ω is the usual pullback of smooth p-forms with respect to the
smooth function F . In particular we obtain the corresponding result that
F ∗ commutes with d′, d′′ and d.
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iii.) For n′1, . . . , n
′
p+q ∈ Rr′ and x′ ∈ U ′ the evaluation as in Remark 2.2 of the

pullback can be written as

〈F ∗α(x′);n′1, . . . , n
′
p+q〉 = 〈α(F (x′)); f(n′1), . . . , f(n′p+q)〉.

iv.) Let F : U ′ → U be a smooth map where U ⊆ Rr and U ′ ⊆ Rr′ are open
subsets. We can define a ’naive’ pullback

F ∗ : Ap,q(U) = Ap(U)⊗C∞(U) A
q(U)→ Ap(U ′)⊗C∞(U ′) A

q(U ′) = Ap,q(U ′)

which is just given by the tensor product of the usual pullbacks of smooth
differential p- respectively q-forms. This construction and the definition in
i.) match for affine maps, however in general for smooth maps it doesn’t
commute with d′, d′′, d. Indeed, let U = R2 and U ′ = R and F (x, y) = xy
and t the coordinate in R, then d′F ∗(d′′t) = d′(yd′′x + xd′′y) = d′y ∧ d′′x +
d′x ∧ d′′y 6= 0, but d′(d′′t) = 0 and hence d′F ∗(d′′t) 6= F ∗(d′(d′′t)).
The reason is that d′ = D ⊗ id, but the pullback on the second factor uses
the differential of F at the point x ∈ Rr′ , which might depend on x. In the
affine case however, the differential has no such dependence.

3. Superforms on polyhedral complexes

3.1. Reminder of basic definitions in convex geometry.

i.) A polyhedron σ ⊆ Rr is the intersection of finitely many halfspaces Hi =
{w ∈ Rr | 〈ui, w〉 ≤ ci} with ci ∈ R and ui ∈ Rr∗, i ∈ {1, . . . , n}. A polytope
is a bounded polyhedron.

ii.) We say that σ is an integral Γ-affine polyhedron for an additive subgroup of
R if we may choose all ui ∈ Zr∗ and ci ∈ Γ.

iii.) Let J = {j ∈ {1, . . . , n} | 〈uj, w〉 = cj ∀w ∈ σ}. Then Aσ = {x ∈ Rr |
〈uj, x〉 = cj ∀j ∈ J} is the smallest affine subspace of Rr which contains σ.
Its underlying linear subspace is Lσ = {x ∈ Rr | 〈uj, x〉 = 0 ∀j ∈ J}. The
dimension of σ is dimσ := dimLσ.

iv.) In particular for an integral Γ-affine polyhedron σ (recall that ker(A) ∩ Zr
is a lattice for a matrix A with integral coefficients) we obtain a lattice
Zσ := Lσ ∩ Zr in Lσ.

v.) The face of a polyhedron σ is either σ itself, the empty set or an intersection
of σ with the boundary of one of its defining halfspaces.

vi.) An (integral Γ-affine) polyhedral complex C in Rr is a finite set of (integral
Γ-affine) polyhedra in Rr which satisfies the following conditions:
a.) If σ ∈ C then all faces of σ lie in C .
b.) If σ, τ ∈ C , then σ ∩ τ is a face of both.

vii.) The support |C | of C is the union of all polyhedra in C . The polyhedral
complex C is called pure dimensional of dimension n if every maximal poly-
hedron in C has dimension n. Write Ck := {σ ∈ C | dimσ = k} for k ∈ N.
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viii.) A polyhedral complex D subdivides the polyhedral complex C if they have
the same support and every δ ∈ D is contained in some σ ∈ C . We then
say D is a subdivision of C .

3.2. Definition. Let C be a polyhedral complex in Rr and Ω an open subset of
|C |.

i.) A superform α ∈ Ap,q(Ω) of bidegree (p, q) is given by a superform α′ ∈
Ap,q(V ) where V ⊆ Rr is open and V ∩ |C | = Ω.

ii.) Two forms α′ ∈ Ap,q(V ) and α′′ ∈ Ap,q(W ) with V ∩ |C | = W ∩ |C | = Ω
define the same superform in Ap,q(Ω) if their restrictions to any polyhedron
in C agree. That is, for all σ ∈ C we have

〈α′(x); v1, . . . , vp, w1, . . . , wq〉 = 〈α′′(x); v1, . . . , vp, w1, . . . , wq〉

for all x ∈ σ ∩ Ω and vi, wj ∈ Lσ.
In this case we write α′|σ = α′′|σ. If α ∈ Ap,q(Ω) is given by α′ ∈ Ap,q(V ),
write α′|Ω = α.

3.3. Remark.

i.) The definition of ∧, d, d′, d′′ on superforms on Rr carries over to superforms
on polyhedral complexes.

ii.) Let F : Rr′ → Rr be an affine map F (x) = f(x) + a with F (|C ′|) ⊆ |C | for
polyhedral complexes C ′ ⊆ Rr′ and C ⊆ Rr. Then we have f(Lσ′) ⊆ Lσ for
all σ′ ∈ C ′ with F (σ′) ⊆ σ for some σ ∈ C , after passing to some subdivision
if necessary. Hence the pullback in Remark 2.4 carries over to a pullback
F ∗ : Ap,q(C )→ Ap,q(C ′).

4. Moment Maps and Tropical Charts

In this and the following section, K is an algebraically closed and complete
field endowed with a nontrivial non-Archimedean absolute value | · |K (sometimes
we just write | · |). In particular the residue field K̃ is also algebraically closed.
Let ν := − log | · | be the associated valuation and Γ := ν(K∗) ⊂ R its value
group. Note that Γ is a divisible, dense subgroup of R.

Also in the following let X always be an algebraic variety over K, i.e. an
integral ( ⇐⇒ reduced and irreducible), separated K-scheme of finite type.
Furthermore note that any open subscheme of X is an algebraic variety again.

4.1. Remark (Analytification). We recall that the topological space of the
analytification Xan of X is the space of all pairs (p, p = | · |p), where p ∈ X and
| · |p is an absolute value on the field κ(p) = OX,p/mX,p which induces | · | on K.
The space Xan is endowed with the coarsest topology, such that the map

π = ker : Xan → X, (p, p = | · |p) 7→ p
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is continuous and such that for each Zariski open subset U in X and each f ∈
OX(U) the map

π−1(U)→ R, (p, p = | · |p) 7→ |f(p)| := |f(p)|p
is continuous.

Furthermore note that if X is affine, Xan is exactly the space of multiplicative
seminorms extending | · |K endowed with the usual topology.

A morphism of varieties ϕ : X → Y induces a morphism on the analytifications
ϕan : Xan → Y an. On topological spaces, this is given locally by precomposing
with ϕ#, i.e. if q = ϕ(p) for some p ∈ X, a pair (p, | · |p) maps to (q, | · |q), where
| · |q is obtained by

OY,q/mY,q

ϕ#
p→ OX,p/mX,p

|·|p→ R≥0.

In the affine case ϕ : X = Spec(B)→ Y = Spec(A) with ϕ = Spec(f : A→ B),
Xan (respectively Y an) can be seen as the set of multiplicative seminorms on B
(respectively A) extending | · |K and on topological spaces we have

ϕan : Xan → Y an,

| · |p 7→ [a 7→ |f(a)|p].

4.2. Definition. We write T = Gr
m = Spec(K[T±1

1 , . . . , T±1
r ]) for the split mul-

tiplicative torus of rank r with coordinates T1, . . . , Tr. Recall that T is an affine
algebraic variety via T ∼= Spec(K[T1, . . . , Tr, S1, . . . , Sr]/(T1S1−1, . . . , TrSr−1)).

i.) We define the tropicalization map

trop: T an → Rr, p 7→ (− log |T1(p)|, . . . ,− log |Tr(p)|),
which is clearly continuous.

ii.) For a closed subvariety Y of T , we call Trop(Y ) := trop(Y an) the tropical
variety associated with Y .

4.3. Remark. For a closed subvariety Y of T of dimension n, the Bieri-Groves-
Theorem says that Trop(Y ) is a finite union of n-dimensional integral Γ-affine
polyhedra in Rr. In tropical geometry it is shown even further that Trop(Y )
is an integral Γ-affine polyhedral complex. The structure of this complex is
only determined up to subdivision, which does not matter for our constructions
though.

4.4. Definition and Remark. Let U be an open subset of the algebraic variety
X. A moment map is a morphism ϕ : U → T to some split split multiplicative
torus T = Gr

m. The tropicalization of ϕ is

ϕtrop := trop ◦ ϕan : Uan ϕan

−→ T an trop−→ Rr.

This is a continuous map with respect to the topology on Uan.
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Let U ′ ⊆ U be another open subset with moment map ϕ′ : U ′ → T ′ = Gr′
m. We

say that ϕ′ refines ϕ if there exists an affine morphism of tori ψ : Gr′
m → Gr

m, such
that ϕ = ψ ◦ ϕ′ on U ′.

Here an affine morphism of tori stems from a group homomorphism Zr → Zr′

composed with a (multiplicative) translation, i.e. it comes from a morphism

K[T±1
1 , . . . , T±1

r ]→ K[T±1
1 , . . . , T±1

r′ ]

Ti 7→ aiT
zi ,

where ai ∈ K∗ and zi = (zi,1, . . . , zi,r′) ∈ Zr′ with T zi := T
zi,1
1 · · ·T zi,r′r′ .

Now in the situation of a refinement above let x ∈ (U ′)an and set c := ϕan(x) ∈
T an respectively c′ := (ϕ′)an(x) ∈ (T ′)an. The i-th component of ϕtrop(x) satisfies

ϕtrop(x)i = − log |Ti(c)| = − log |Ti(ψan(c′))| = − log |ψ(Ti)(c
′)| =

= − log |aiT zi(c′)| = − log |ai|+
r′∑
j=1

zi,j (− log |Tj(c′)|) = − log |ai|+
r′∑
j=1

zi,jϕ
′
trop(x)j.

Hence we see that ψ induces an integral Γ-affine map Trop(ψ) : Rr′ → Rr such
that ϕtrop = Trop(ψ) ◦ ϕ′trop on (U ′)an.

4.5. Remark. If ϕi : Ui → Gri
m are finitely many moment maps of nonempty

open subsets U1, . . . , Un of X, then U :=
⋂
i Ui is an open subset of X which

is nonempty (because as variety, X is irreducible). Note that the fibre product∏
iGri

m
∼= Spec(

⊗
iK[T±1

1 , . . . , T±1
ri

]) ∼= G
∑

i ri
m is a split torus as well and the

universal property of the product yields a morphism

ϕ := ϕ1 × · · · × ϕn : U → G
∑

i ri
m ,

which refines each ϕi via the canonical projection maps. Moreover the universal
property of the fibre product immediately yields that for U ′ ⊆ U open every
moment map ϕ′ : U ′ → T ′ which refines every ϕi also refines ϕ.

4.6. Lemma. Let ϕ : U → Gr
m be a moment map on an open subset U of X and

let U ′ be a nonempty open subset of U . Then ϕtrop((U ′)an) = ϕtrop(Uan).

Proof. [Gub16, Lemma 4.9].

4.7. Remark. Let U ⊆ X be an open affine subset. We construct a canon-
ical moment map ϕU as follows: By a generalization of Dirichlet’s unit theo-
rem the group MU := OX(U)∗/K∗ is free of finite rank. Choose representatives
ϕ1, . . . , ϕr ∈ OX(U)∗ of a basis, and we obtain a map
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K[T±1
1 , . . . , T±1

r ]→ OX(U),

Ti 7→ ϕi

which gives a moment map ϕU : U → Gr
m =: TU . Note that this moment map

is ’canonical’ up to base change and multiplicative translation by elements of K∗.

4.8. Remark. Let f : X ′ → X be morphism of algebraic varieties over K and
let U ′ ⊆ X ′ and U ⊆ X be open subsets with f(U ′) ⊆ U . Denote by g the
composition of morphisms of rings

OX(U)
f#(U)−→ OX′(f−1(U)︸ ︷︷ ︸

⊇U ′

)
|U′−→ OX′(U ′).

If ϕ1, . . . , ϕr ∈ OX(U)∗ (respectively ϕ′1, . . . , ϕ
′
r′) are lifts of a basis of MU

(respectively MU ′), then g(ϕi) = aiϕ
′zi for ai ∈ K∗ and zi ∈ Zr′ . The morphism

K[T±1
1 , . . . , T±1

r ]→ K[T±1
1 , . . . , T±1

r′ ],

Ti 7→ aiT
zi

gives rise to a morphism ψU,U ′ : Gr′
m → Gr

m, satisfying

ψU,U ′ ◦ ϕU ′ = ϕU ◦ f
on U ′ (to see equality note again that Gr

m is affine, hence HomSch(U,Gr
m) ∼=

HomRing(K[T±1
1 , . . . , T±1

r ],OX(U))).
In the case X = X ′ and f = id, get affine morphism of tori ψU,U ′ : Gr′

m → Gr
m

such that ψU,U ′ ◦ϕU ′ = ϕU on U ′. Hence for an inclusion U ′ ⊆ U of open subsets
in X, the canonical moment map ϕU ′ always refines ϕU in the sense of Definition
4.4.

4.9. Definition. An open subset U of is called very affine if U has a closed
immersion into a split torus.

4.10. Remark. For an open affine subset U ⊆ X the following properties are
clearly equivalent:

i.) The canonical moment map ϕU is a closed embedding.
ii.) U is very affine.

iii.) OX(U) is finitely generated as a K-algebra by OX(U)∗.

The following lemma shows that all local considerations can be done using very
affine open subsets.
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4.11. Lemma. Let X be an algebraic variety.

i.) The intersection of two very affine subsets U ↪→ Gr
m, U

′ ↪→ Gr′
m of X is very

affine again.
ii.) The very affine open subsets of X form a basis for the Zariski topology.

Proof. i.) As X is separated, the intersection of two affine subsets U ∩ U ′ is
affine again and the canonical map U ∩U ′ → U ×U ′ is a closed immersion.
The natural map ϕ × ϕ′ : U × U ′ → Gr

m × Gr′
m
∼= Gr+r′

m is also a closed
immersion, as the corresponding map on the tensor products is surjective.
Hence U ∩ U ′ → Gr+r′

m is a closed immersion.
ii.) Let x ∈ X and U ⊆ X be open neighborhood of x. It suffices to show that

there is very affine open V around x with V ⊆ U . As open subschemes
of varieties are varieties again, and by possibly passing to a smaller open
neighborhood, we can assume that U is affine with U = Spec(A), where A
is a K-algebra of finite type, i.e. it is of the form A = K[T1, . . . , Tn]/a for
some ideal a. Let p denote the prime ideal of A corresponding to x and T i
the class of Ti in A. Consider the elements f1, . . . , fn ∈ A with

fi =

{
Ti, if Ti 6= p

Ti + 1, if Ti ∈ p
.

Then V := D(f1) ∩ · · · ∩ D(fn) = D(f1 · · · fn) ⊆ U = Spec(A) is open

around x and corresponds to localization A
[

1
f1···fn

]
. We obtain a surjective

K-algebra morphism

K[T±1
1 , . . . , T±1

n ]→ A

[
1

f1 · · · fn

]
,

Ti → fi

which gives closed immersion V ↪→ Gn
m.

�

4.12. Remark. On a very affine open subset, we will always use the canonical
moment map ϕU : U → TU := Gr

m, which is a closed immersion by Remark 4.10.
We write Trop(U) := Trop(ϕU(U)) ⊆ Rr for the tropical variety of U in TU . For
the tropicalization map we briefly write tropU := (ϕU)trop : Uan → Rr. Recall that
ϕU is only determined up to multiplicative translation and change of basis. Hence
by Definition 4.4, tropU and Trop(U) are only canonical up to affine translation.

4.13. Definition.

i.) A tropical chart (V, ϕU) onXan consists of an open subset V ofXan contained
in Uan for a very affine open subset U of X with V = trop−1

U (Ω) for some
open subset Ω of Trop(U). Note that tropU(V ) = Ω.

ii.) A tropical chart (V ′, ϕU ′) is called a tropical subchart of (V, ϕU) if V ′ ⊆ V
and U ′ ⊆ U .
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4.14. Remark. Note that the analytification of morphisms preserves immer-
sions, i.e. if U ⊆ U ′ as subschemes, then Uan ⊆ (U ′)an. Hence we can talk about
inclusions (U ′)an ⊆ Uan ⊆ Xan as in the definition above and about intersections
as below.

4.15. Remark. Let (V ′, ϕU ′) be a tropical subchart of (V, ϕU) with V ′ = trop−1
U ′ (Ω′)

respectively V = trop−1
U (Ω) as above. By Remark 4.8 ϕU ′ refines ϕU and there

exists affine morphism ψU,U ′ such that ψU,U ′ ◦ϕU ′ = ϕU on U ′ and hence tropU =
Trop(ψU,U ′) ◦ tropU ′ on (U ′)an. Obtain

Trop(U) = tropU(Uan)
4.6
= tropU((U ′)an) =

= (Trop(ψU,U ′) ◦ tropU ′)((U ′)an) = Trop(ψU,U ′)(Trop(U ′)).

Hence Trop(ψU,U ′) restricts to a surjective affine map of supports of polyhedral
complexes

Trop(ψU,U ′) : Trop(U ′)→ Trop(U).

Furthermore this yields

Trop(ψU,U ′)(Ω′) = Trop(ψU,U ′)(tropU ′(V ′)) = tropU( V ′︸︷︷︸
⊆V

) ⊆ Ω.

4.16. Proposition. The tropical charts on Xan have the following properties:

i.) For every open subset W ⊆ Xan and every x ∈ W there exists a tropical
chart (V, ϕU) with x ∈ V ⊆ W . Furthermore, V can be chosen such that
tropU(V ) is relatively compact in Trop(U).

ii.) The intersection (V ∩V ′, ϕU∩U ′) of tropical charts (V, ϕU) and (V ′, ϕU ′) is a
tropical subchart of both.

iii.) If (V, ϕU) is a tropical chart and if U ′′ is a very affine open subset of U with
V ⊆ (U ′′)an, then (V, ϕU ′′) is a tropical subchart of (V, ϕU).

Proof. i.) As the very affine open subsets form a basis of the Zariski topology on
X and Xan can be obtained by glueing, we may assume that X = Spec(A)
is a very affine scheme. A basis of Xan is formed by subsets of the form
V := {x ∈ Xan | s1 < |f1(x)| < r1, . . . , sk < |fk(x)| < rk} with all fi ∈ A
and real numbers si < ri. We can even assume that all si > 0. Indeed, let
r > 0. As |K∗| lies dense in R≥0, we can find a sequence (an)n∈N in K∗,
such that limn→∞ |an| = 0 and all |an| < r, and it is easy to check using the
ultrametric triangle inequality that

{x ∈ Xan | |f(x)| ∈ [0, r)} =
⋃
i∈N

{x ∈ Xan | |(f + ai)(x)| ∈ (
|ai|
2
, r)}

for any f ∈ A.
Now any V of such a form lies in the analytification of the very affine

open subset U := {x ∈ X | f1(x) 6= 0, . . . , fk(x) 6= 0}. In order to show that
(V, ϕU) is a tropical chart, it remains to show that V = trop−1

U (Ω) for some



11

open subset Ω of Trop(U).
For this, let g1, . . . , gn ∈ OX(U)∗ = A[ 1

f1···fk
]∗ be lifts of a basis ofOX(U)∗/K∗.

We can assume without loss of generality that ϕU is given by the map

ψ : K[T±1
1 , . . . , T±1

n ]→ OX(U), Ti 7→ gi.

For any j ∈ {1, . . . , k}, there are aj ∈ K∗ and zj ∈ Zn, such that fj =
aj · gzj = ψ (ajT

zj).
Note that tropU(x) = (− log(|g1(x)|), . . . ,− log(|gn(x)|)) for any x ∈ Uan

and consider for any j ∈ {1, . . . , k} the continuous map

αj : Rn → R,

(y1, . . . , yn) 7→ |aj| · exp

(
−

n∑
i=1

zj,iyi

)
.

See easily that

|fj(x)| ∈ (sj, rj) ⇐⇒ αj ◦ tropU(x) ∈ (sj, rj)

for all j ∈ {1, . . . , k} and x ∈ Uan.

Hence V = trop−1
U (

k⋂
j=1

α−1
j (sj, rj)︸ ︷︷ ︸

=:Ω open

).

Furthermore tropU(V ) is relatively compact, as Ω is clearly bounded,
hence its closure is compact.

ii.) Let (V, ϕU : U → Gr
m) respectively (V ′, ϕU ′ : U ′ → Gr′

m) be tropical charts
with Ω = tropU(V ) respectively Ω′ = tropU ′(V ′) open subsets in Trop(U)
respectively Trop(U ′). By Lemma 4.11 the intersection U ∩U ′ is very affine
via closed embedding

Φ: U ∩ U ′ α−→ U × U ′ ϕU×ϕU′−→ Gr
m ×Gr′

m
∼= Gr+r′

m .

Here α is the closed immersion coming from the canonical surjective map
OX(U) ⊗K OX(U ′) → OX(U ∩ U ′) (X is separated, hence intersections of
affines are affine). Now consider the following diagram of the underlying
topological spaces of analytifications:
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(U ′ ∩ U)an

(U ′ × U)an Uan

(Gr′
m ×Gr

m)an (Gr
m)an

(U ′)an (Gr′
m)an Rr′+r Rr

Rr′

αan

(ϕU′×ϕU )an
ϕan
U

(1)trop
πan
r′

πan
r

trop

ϕan
U′

(2)

trop

proj

proj

The commutativity of the diagram is clear except for subdiagrams (1) and
(2). Show commutativity of (1) (analogously for (2)): Let x ∈ (Gr′

m×Gr
m)an,

i.e. via the isomorphism as in Remark 4.5 a multiplicative seminorm in
Spec(K[S±1

1 , . . . S±1
r′ , T

±1
1 , . . . , T±1

r ]). As πan
r (x) is the precomposition of x

with

K[T±1
1 , . . . , T±1

r ]→ K[S±1
1 , . . . S±1

r′ ]⊗KK[T±1
1 , . . . , T±1

r ]→ K[S±1
1 , . . . S±1

r′ , T
±1
1 , . . . , T±1

r ]

we see that |Ti(πan
r (x))| = |Ti(x)|. Then

proj ◦ trop(x) = (− log |T1(x)|, . . . ,− log |Tr(x)|) = trop ◦ πan
r (x).

Hence the whole diagram commutes. The diagram yields immediately that
the set Ω′′ := Φtrop((U ∩ U ′)an) ∩ (Ω × Ω′) ⊆ Rr+r′ is an open subset of
Φtrop((U ∩ U ′)an). Furthermore Φ−1

trop(Ω′′) = V ∩ V ′. As ϕU∩U ′ refines Φ, we
obtain affine map Trop(ψ) as in 4.4 such that

Φtrop = Trop(ψ) ◦ tropU∩U ′

on (U ∩ U ′)an which immediately yields that

Ω′′′ := Trop(ψ)−1(Ω′′) ∩ Trop(U ∩ U ′)
is an open subset of Trop(U ∩ U ′) with V ∩ V ′ = trop−1

U∩U ′(Ω′′′).
iii.) We need to show that V = trop−1

U ′′(Ω′′) for some open Ω′′ in Trop(U ′′).
As ϕU ′′ refines ϕU , let as above Trop(ψ) be the affine map with tropU =
Trop(ψ) ◦ tropU ′′ on (U ′′)an. As (V, ϕU) is tropical chart, let Ω := tropU(V )
be the corresponding open subset of Trop(U) with V = trop−1

U (Ω). From
V ⊆ (U ′′)an we get as in ii.) that V = trop−1

U ′′(Ω′′) for the open subset
Ω′′ := Trop(ψ)−1(Ω) ∩ Trop(U ′′). �
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5. Differential Forms on Algebraic Varieties

5.1. Recollection. A tropical chart (V, ϕU) consists of an open subset V of Uan

for a very affine open subset U of X such that V = trop−1
U (Ω) for some open

subset Ω = tropU(V ) of Trop(U). Here ϕU : U → Gr
m is the canonical moment

map. For such a moment map we shortly write TU := Gr
m and RU := Rr (i.e.

omit the ’r’).
The tropical variety Trop(U) is the support of a polyhedral complex in RU

via the tropicalization map tropU : Uan → RU . The canonical map ϕU is only
determined up to affine morphism of tori (see Remark 4.4), hence all tropical
constructions are canonical up to integral Γ-affine isomorphism.

For a tropical subchart (V ′, ϕU ′) ⊆ (V, ϕU) there is an affine morphism ψU,U ′ : TU ′ →
TU with ϕU = ψU,U ′ ◦ ϕU ′ on U ′.
The induced integral Γ-affine map Trop(ψU,U ′) : RU ′ → RU surjectively maps
Trop(U ′) onto Trop(U) (see Remark 4.15) with Trop(ψU,U ′)(tropU ′(V ′)) ⊆ tropU(V ).

5.2. Definition. Consider the situation as above. We define the restriction of a
superform α ∈ Ap,qTrop(U)(Ω) to a superform on Ω′ := tropU ′(V ′) by

α|V ′ := Trop(ψU,U ′)∗α ∈ Ap,qTrop(U ′)(Ω
′).

5.3. Remark. For tropical subcharts (Ṽ , ϕŨ) ⊂ (V ′, ϕU ′) ⊂ (V, ϕU) and α ∈
Ap,qTrop(U)(Ω), note that

Trop(ψU,Ũ) = Trop(ψU,U ′) ◦ Trop(ψU ′,Ũ),

hence

(α|V ′)|Ṽ = α|Ṽ .

5.4. Definition.

i.) A differential form α of bidegree (p, q) on an open subset V of Xan is given
by a family {(Vi, ϕUi

, αi)}i∈I such that
a.) For all i ∈ I the pair (Vi, ϕUi

) is a tropical chart of Xan and
⋃
i∈I Vi = V .

b.) For all i ∈ I we have αi ∈ Ap,qTropUi
(Ωi) with Ωi = tropUi

(Vi).

c.) All αi agree on intersections, that is for all (i, j) ∈ I2 we have

αi|Vi∩Vj = αj|Vi∩Vj ∈ A
p,q
Trop(Ui∩Uj)(tropUi∩Uj

(Vi ∩ Vj)).

ii.) If α′ = {(V ′i , ϕU ′
i
, α′i)}i∈I′ is another differential form on V , then we consider

α and α′ as the same differential form if and only if

αi|Vi∩V ′
j

= α′j|Vi∩V ′
j

for all (i, j) ∈ I × I ′.
iii.) We denote the space of (p, q)-differential forms on V by Ap,q(V ).
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iv.) For (Vi, ϕUi
, αi) we define the differential operator

d′ : Ap,q(V )→ Ap+1,q(V )

d′α := (Vi, ϕUi
, d′αi).

Analogously for d′′, d and the wedge product ∧.

5.5. Lemma. Let α ∈ Ap,q(V ) be given by one canonical tropical chart (V, ϕU , α
′)

and assume there exist tropical subcharts {(Vi, ϕUi
)}i∈I of (V, ϕU) such that

α′|Vi = 0 for all i ∈ I. Then already α′ = 0.

Proof. [Jel216, Lemma 3.2.12].

5.6. Corollary. Let V ⊆ Xan be an open subset and let α = (Vi, ϕUi
, αi) and

α′ = (V ′j , ϕU ′
j
, α′j) be two differential forms on V . Suppose there are tropical

subcharts (Wijl, ϕŨijl
) of (Vi ∩ V ′j , ϕUi∩U ′

j
) for all i, j such that Vi ∩ V ′j =

⋃
ijlWijl

with

(αi|Vi∩V ′
j
)|Wijl

= (α′j|Vi∩V ′
j
)|Wijl

for all l. Then α = α′.

5.7. Remark.

i.) LetW ⊆ V be an inclusion of open subsets inXan and α = {(Vi, ϕUi
, αi)}i∈I ∈

Ap,q(V ). By Proposition 4.16 we can choose tropical charts {(Wj, ϕU ′
j
)}j∈J

such that
⋃
j∈JWj = W and for all j ∈ J there is an i(j) ∈ I with Wj ⊆ Vi(j)

and U ′j ⊆ Ui(j). We then have a natural restriction map

α|W := (Wj, ϕU ′
j
, αi(j)|Wj

) ∈ Ap,q(W ),

which is well-defined, as it is independent of the choice of tropical charts
above.

Indeed, let {(W̃k, ϕŨk
)}k∈K be another cover of W as above and let β :=

{(Wj, ϕU ′
j
, αi(j)|Wj

)}j∈J and γ := {(W̃k, ϕŨk
, αi(k)|W̃k

)}k∈K . Then for any

(j, k) ∈ J ×K have Wj ∩ W̃k ⊆ Vi(j) ∩ Vi(k) and hence

βj|Wj∩W̃k
= (αi(j)|Wj

)|Wj∩W̃k
= αi(j)|Wj∩W̃k

= (αi(j)|Vi(j)∩Vi(k))|Wj∩W̃k

= (αi(k)|Vi(j)∩Vi(k))|Wj∩W̃k
= αi(k)|Wj∩W̃k

= (αi(k)|W̃k
)|Wj∩W̃k

= γk|Wj∩W̃k
.

ii.) With the restriction map the differential forms define a presheaf Ap,q(•) on
Xan by

V 7→ Ap,q(V ).

Using i.) and Corollary 5.6, we obtain that Ap,q(•) is a sheaf.
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5.8. Theorem (d′′-Poincaré Lemma). Let V ⊆ Xan be an open subset. Let
x ∈ V and α ∈ Ap,q(V ) with q > 0 and d′′α = 0. Then there exists some open
W ⊆ V with x ∈ W and some β ∈ Ap,q−1(W ) such that d′′β = α|W .

Proof. [Jel16, Theorem 4.5].
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