The Laplacian on a metrized graph

JONATHAN PIRNAY (MN 1740960)

Lecture in the Seminar on Potential Theory on the Berkovich Projective Line on June 11th 2018

Throughout this document let Γ always denote a metrized graph with a fixed orientation.

1. The Laplacian on $BDV(\Gamma)$

1.1. Reminder.

i.) We have defined $\text{CPA}(\Gamma) := \{f \colon \Gamma \to \mathbb{R} \mid f \text{ continuous, piecewise affine}\}$ and $\text{Zh}(\Gamma)$ as the set of all continuous functions $f \colon \Gamma \to \mathbb{R}$ such that fis piecewise \mathcal{C}^2 (i.e. exists vertex set $X_f \subseteq \Gamma$ such that $\Gamma \setminus X_f$ is finite union of open intervals and restriction of f to each of those is \mathcal{C}^2) and $f''(x) \in L^1(\Gamma, dx).$

Furthermore $\mathcal{D}(\Gamma) := \{ f \colon \Gamma \to \mathbb{R} \mid d_{\vec{v}} f(p) \text{ exists } \forall p \in \Gamma, \vec{v} \in T_p(\Gamma) \}$ and Laplacian

(1)
$$\Delta_{\mathrm{Zh}} := -f''(x)dx + \sum_{p \in \Gamma} (-\sum_{\vec{v} \in T_p(\Gamma)} d_{\vec{v}}f(p))\delta_p(x).$$

- ii.) Obviously $CPA(\Gamma) \subseteq Zh(\Gamma)$ and $\Delta_{Zh}|_{CPA(\Gamma)} = \Delta_{CPA}$.
- iii.) Let $\mathcal{A} := \mathcal{A}(\Gamma)$ be the Boolean algebra of subsets of Γ generated by the connected open sets. Each $S \in \mathcal{A}$ is a finite disjoint union of sets isometric to open, half-open or (possibly degenerate) closed intervals.
- iv.) For $f \in \mathcal{D}(\Gamma)$ we have defined a finitely additive set function m_f on \mathcal{A} by requiring that for each $S \in \mathcal{A}$ have

(2)
$$m_f(S) = \sum_{\substack{p \in b(S), \ \vec{v} \in \operatorname{In}(p,S) \\ p \notin S}} \sum_{\vec{v} \in \operatorname{In}(p,S)} d_{\vec{v}} f(p) - \sum_{\substack{p \in b(S), \ \vec{v} \in \operatorname{Out}(p,S) \\ p \in S}} \sum_{\vec{v} \in \operatorname{Out}(p,S)} d_{\vec{v}} f(p).$$

Here $b(S) = \overline{S} \cap \overline{\Gamma \setminus S}$ as usual and for $p \in \Gamma$ define $\operatorname{In}(p, S)$ as the set of all $\vec{v} \in T_p(\Gamma)$ for which $p + t\vec{v}$ belongs to S for all sufficiently small t > 0. Accordingly $\operatorname{Out}(p, S) := T_p(\Gamma) \setminus \operatorname{In}(p, S)$.

v.) The linear subspace $BDV(\Gamma) \subseteq \mathcal{D}(\Gamma)$ is defined as the set of functions $f \in \mathcal{D}(\Gamma)$ of bounded differential variation, i.e. there exists B > 0 such that for any countable family \mathcal{F} of pairwise disjoint sets of \mathcal{A} have

(3)
$$\sum_{S_i \in \mathcal{F}} |m_f(S_i)| \le B.$$

vi.) For $f \in BDV(\Gamma)$ the function m_f extends to a finite, signed Borel measure m_f^* of total mass 0 on Γ .

1.2. **Definition.** For $f \in BDV(\Gamma)$ define the Laplacian $\Delta(f)$ as the finite, signed Borel measure

$$\Delta(f) := m_f^*.$$

1.3. Lemma. $\operatorname{Zh}(\Gamma) \subseteq \operatorname{BDV}(\Gamma)$ and for $f \in \operatorname{Zh}(\Gamma)$ have $\Delta(f) = \Delta_{\operatorname{Zh}}(f)$.

Proof: Let $f \in \operatorname{Zh}(\Gamma)$ and X_f a vertex set for Γ such that $f \in \mathcal{C}^2(\Gamma \setminus X_f)$. To see that $f \in \mathcal{D}(\Gamma)$ we need to show that $d_{\vec{v}}f(p)$ exists for all $p \in X_f$ and $\vec{v} \in T_p(\Gamma)$. Hence let $p \in X_f$ and $\vec{v} \in T_p(\Gamma)$ and let $t_0 > 0$ such that $p + t\vec{v} \in \Gamma \setminus X_f$ for all $t \in (0, t_0)$. Furthermore abuse notation by writing f(t) for $f(p + t\vec{v})$ and observe that $f \in \mathcal{C}^2((0, t_0))$. Obviously $d_{\vec{v}}f(p)$ exists if and only if $\lim_{t\to 0^+} f'(t)$ exists. So let $\epsilon > 0$ and choose $0 < \delta < t_0$ in a way that $\int_{(0,\delta)} |f''(t)dt| < \epsilon$, which is possible as $f'' \in L^1(\Gamma, dx)$. Then for all $t_1, t_2 \in (0, \delta)$ we get

(4)
$$|f'(t_2) - f'(t_1)| = \left| \int_{t_1}^{t_2} f''(t) dt \right| \le \int_{t_1}^{t_2} |f''(t)| \, dt < \epsilon,$$

hence $\lim_{t\to 0^+} f'(t)$ exists and $f \in \mathcal{D}(\Gamma)$.

Now let $\{E_i\}_{i\in\mathbb{N}}$ be family of pairwise disjoint sets in \mathcal{A} . By [BR10, Prop. 3.5(B)] we can assume that $E_i \in \mathcal{A}$ is connected and closed $\forall i \in \mathbb{N}$, hence even further we may assume that $\{E_i\}_{i\in\mathbb{N}}$ consists of disjoint sets which are either a closed interval or an isolated point. For $p \in \Gamma \setminus X_f$ have $m_f(\{p\}) = -\sum_{\vec{v}\in T_p(\Gamma)} d_{\vec{v}}f(p) = 0$ as seen before, and for a closed interval $[t_0, t_1]$ on an edge of $\Gamma \setminus X_f$ obtain with (2) and (4)

$$|m_f([t_0, t_1])| = \left| \sum_{\substack{p \in b([t_0, t_1]), \ \vec{v} \in \operatorname{Out}(p, [t_0, t_1]) \\ p \in [t_0, t_1]}} \sum_{\vec{v} \in \operatorname{Out}(p, [t_0, t_1])} d_{\vec{v}} f(p) \right| = |f'(t_1) - f'(t_0)| \le \int_{t_0}^{t_1} |f''(t)| \, dt.$$

Using this obtain

$$\sum_{i \in \mathbb{N}} |m_f(E_i)| \le \sum_{p \in X_f} |m_f(\{p\})| + \int_{\Gamma} |f''(t)| \, dt < \infty,$$

hence $f \in BDV(\Gamma)$ as desired.

It remains to show that $\Delta(f) = \Delta_{Zh}(f)$. For this it suffices to show equality on points $p \in X_f$ and open intervals (c, d) contained in an edge of $\Gamma \setminus X_f$. For $p \in X_f$ get

$$\Delta(f)(\{p\}) = -\sum_{\vec{v}\in T_p(\Gamma)} d_{\vec{v}}f(p) = \Delta_{\mathrm{Zh}}(f)(\{p\}).$$

For (c, d) as above get by (2) that

$$\begin{split} \Delta(f)((c,d)) &= m_f((c,d)) = \sum_{\substack{p \in b((c,d)), \ \vec{v} \in \operatorname{In}(p,(c,d))\\ p \notin (c,d)}} \sum_{\vec{v} \in \operatorname{In}(p,(c,d))} d_{\vec{v}} f(p) \\ &= f'(c) - f'(d) = -\int_c^d f''(x) dx = \Delta_{\operatorname{Zh}}(f)((c,d)). \end{split}$$

1.4. **Proposition.** Let $f \in BDV(\Gamma)$ and assume

(5)
$$\Delta(f) = g(x)dx + \sum_{p_i \in X} c_{p_i}\delta_{p_i}(x)$$

for a piecewise continuous function $g \in L^1(\Gamma, dx)$ and a finite set $X \subseteq \Gamma$. Furthermore let $X_g \subseteq \Gamma$ be a vertex set containing X and the finitely many points where g is not continuous. Put $c_{p_i} := 0 \forall p_i \in X_g \setminus X$. Then the following holds:

i.) $f''(x) = -g(x) \ \forall x \in \Gamma \setminus X_g,$ ii.) $f \in \operatorname{Zh}(\Gamma),$ iii.) $\Delta(f)(\{p_i\}) = c_{p_i} \ \forall p_i \in X_a.$

Proof. Consider an edge in $\Gamma \setminus X_g$, identifying it with an interval (a, b) via our chosen parametrization. For each $x \in (a, b)$ have $-\sum_{\vec{v} \in T_x(\Gamma)} d_{\vec{v}} f(x) = \Delta(f)(\{x\}) = 0$, where the last equality follows from (5) as $x \notin X$, hence f'(x) exists. For small h > 0 get

$$f'(x+h) - f'(x) = -(-(-f'(x) + f'(x+h)))$$

= -(-($\sum_{\substack{p \in b([x,x+h]), \ v \in Out(p,[x,x+h])}} \sum_{dv f(p)} d_v f(p))$)
= - $\Delta(f)([x,x+h]) = -\int_x^{x+h} g(t)dt.$

Analogously for h < 0 obtain $f'(x+h) - f'(x) = -(-f'(x+h) + f'(x)) = \Delta(f)([x+h,h]) = \int_{x+h}^{x} g(t)dt = -\int_{x}^{x+h} g(t)dt$. Hence

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \left(-\frac{1}{h} \cdot \int_x^{x+h} g(t) dt \right) = -g(x),$$

which shows i.), while ii.) and iii.) are direct consequences.

1.5. Corollary. If $f \in BDV(\Gamma)$ and $\Delta(f) = \sum_{i=1}^{k} c_i \delta_{p_i}$ is a discrete measure, then $f \in CPA(\Gamma)$.

Proof. Since $\Delta(f)$ discrete, obtain by 1.4 ii.) that $f \in \text{Zh}(\Gamma)$ and hence $\Delta(f) = \Delta_{\text{Zh}}(f)$. Fixing appropriate vertex set X for Γ we see by 1.4 i.) that f''(x) =

-g(x) = 0 on $\Gamma \setminus X$, so f(x) is affine on each segment of $\Gamma \setminus X \implies f \in CPA(\Gamma)$.

2. Finite signed Borel measures on Γ

Our aim now is to show that every finite signed Borel measure on Γ of total mass 0 already is the Laplacian of some function in BDV(Γ). We first remind of some measure-theoretic statements.

2.1. Reminder.

i.) (Weak convergence) Let X be metric space with Borel σ -algebra Σ . We say that a sequence $\{\mu_n\}$ of Borel measures *converges weakly* to Borel measure μ if for every $f \in C_{bd}(X)$ have

$$\lim_{n \to \infty} \int_X f d\mu_n = \int_X f d\mu.$$

Analogously define weak convergence for signed Borel measures.

- ii.) (Hahn decomposition) Let μ be finite signed measure on measurable space (X, Σ) . There exist two measurable sets P, N such that
 - a.) $P \cup N = X$ and $P \cap N = \emptyset$,
 - b.) $\mu(E) \ge 0 \ \forall E \in \Sigma \text{ with } E \subseteq P$,
 - c.) $\mu(E) \leq 0 \ \forall E \in \Sigma \text{ with } E \subseteq N.$

We get (nonnegative) measures μ^+ and μ^- by $\mu^+(E) = \mu(P \cap E)$ and $\mu^-(E) = \mu(N \cap E) \ \forall E \in \Sigma$.

Both μ^+ and μ^- are finite (nonnegative) measures and satisfy

(6)
$$\mu = \mu^+ - \mu^-.$$

The measure $|\mu| = \mu^+ + \mu^-$ is the variation of μ and $|\mu|(X)$ is called the total variation of μ .

iii.) With (6) one can show a "triangle inequality"

(7)
$$\left| \int f d\mu \right| = \left| \int f d\mu^{+} - \int f d\mu^{-} \right|$$
$$\leq \left| \int f d\mu^{+} \right| + \left| \int f d\mu^{-} \right|$$
$$\leq \int |f| d\mu^{+} + \int |f| d\mu^{-}$$
$$= \int |f| d|\mu|.$$

2.2. **Definition.** Let ν be finite signed Borel measure on Γ . A sequence $\{\nu_n\}_{n \in \mathbb{N}}$ of finite signed Borel measures converges *moderately well* to ν if:

(A) There is bound B > 0 such that $|\nu_n|(\Gamma) \leq B \ \forall n \in \mathbb{N}$.

- 2.3. **Remark.** Let ν and $\{\nu_n\}$ as in Def. 2.2.
 - i) As each set in \mathcal{A} is finite disjoint union of segments, condition (B) implies that

(8)
$$\lim_{n \to \infty} \nu_n(S) = \nu(S) \ \forall S \in \mathcal{A},$$

in particular $\lim_{n\to\infty} \nu_n(\Gamma) = \nu(\Gamma)$, and $|\nu|(\Gamma) \leq B$.

- ii) By construction of appropriate step functions using characteristic functions of elements in \mathcal{A} , we obtain for $f \in \mathcal{C}_{bd}(\Gamma)$ with (8) that $\{\nu_n\}$ converges weakly to ν .
- iii) For any finite signed Borel measure ν on Γ there is a sequence of discrete signed measures which converges moderately well to ν . For details of the construction see [BR10, Section 3.6, p.63].

We can finally state our main proposition.

2.4. **Proposition.** Let ν be finite signed Borel measure on Γ . Fix $z \in \Gamma$ and put $h(x) = \int_{\Gamma} j_z(x, y) d\nu(y)$. Let $M = |\nu|(\Gamma)$ be the total variation of ν . Then:

- i.) Have $h \in BDV(\Gamma)$ and $\Delta(h) = \nu \nu(\Gamma)\delta_z$.
- ii.) For each $x \in \Gamma$ and each $\vec{v} \in T_x(\Gamma)$ have $|d_{\vec{v}}h(x)| \leq M$.
- iii.) Let $\{\nu_n\}_{n\in\mathbb{N}}$ be any sequence of finite signed Borel measures which converges weakly to ν . For each $n \in \mathbb{N}$ put $h_n(x) = \int_{\Gamma} j_z(x, y) d\nu_n(y)$. Then $\{h_n\}_{n\in\mathbb{N}}$ converges pointwise to h on Γ and if there is $B \ge 0$ such that $|\nu_n|(\Gamma) \le B$ for all $n \in \mathbb{N}$, the convergence is uniform.
- iv.) If $\{\nu_n\}_{n\in\mathbb{N}}$ converges moderately well to ν , then for each $x\in\Gamma$ and $\vec{v}\in T_x(\Gamma)$,

(9)
$$\lim_{n \to \infty} d_{\vec{v}} h_n(x) = d_{\vec{v}} h(x)$$

2.5. **Remark.** Statement iv.) need not hold if $\{\nu_n\}_{n\in\mathbb{N}_{\geq 1}}$ merely converges weakly to ν . For example let $\Gamma = [0, 1], z = 0, \nu = \delta_1 - \delta_0$ and let $\nu_n = \delta_1 - \delta_{\frac{1}{n}}$ for each $n \geq 1$. Then $\{\nu_n\}$ converges weakly to ν , but not moderately well, as for $(0, 1] \subseteq \Gamma$ we have $\nu((0, 1]) = 1 \neq 0 = \lim_{n \to \infty} \underbrace{\nu_n((0, 1])}_{=0}$.

Use the explicit construction of $j_z(x, y)$ as in [BR10, Section 3.3, p.52] and obtain

$$h(x) = \underbrace{j_0(x,1)}_{=x} - \underbrace{j_0(x,0)}_{=0} = x$$

and analogously

$$h_n(x) = \underbrace{j_0(x,1)}_{=x} - \underbrace{j_0(x,\frac{1}{n})}_{=x \text{ if } x < 1/n, \atop 1/n \text{ else}} = \max(0, x - \frac{1}{n}).$$

However for the unique $\vec{v} \in T_0(\Gamma)$ we have $d_{\vec{v}}h(0) = 1$, while $d_{\vec{v}}h_n(0) = 0 \ \forall n \ge 1$. 2.6. **Corollary.** If ν is finite signed Borel measure on Γ with $\nu(\Gamma) = 0$, then there exists $h \in \text{BDV}(\Gamma)$ such that $\Delta(h) = \nu$.

Proof. Follows immediately from 2.4, part i.).

2.7. Corollary. Let ν be finite signed Borel measure on Γ , let $y \in \Gamma$ and consider

$$F_y(x) := j_\nu(x,y) := \int_{\Gamma} j_\xi(x,y) d\nu(\xi).$$

Then $F_y \in BDV(\Gamma)$ satisfying $\Delta_x(F_y) = \nu(\Gamma)\delta_y - \nu$.

Proof. From [BR10, Prop. 3.3(A)] we see that for any $z \in \Gamma$,

$$F_{y}(x) = \int_{\Gamma} j_{\xi}(x, y) d\nu(\xi)$$

=
$$\int_{\Gamma} j_{z}(x, y) - j_{z}(x, \xi) - \underbrace{j_{z}(y, \xi) + j_{z}(\xi, \xi) d\nu(\xi)}_{=:C<\infty, \text{ independent of } x}$$

$$=\nu(\Gamma)j_z(x,y) - \int_{\Gamma} j_z(x,\xi)d\nu(\xi) - C.$$

With 2.4 and as $\Delta_x j_z(x,y) = \delta_y - \delta_z$ obtain

$$\Delta_x(F_y) = \nu(\Gamma)(\delta_y - \delta_z) - (\nu - \nu(\Gamma)\delta_z) = \nu(\Gamma)\delta_y - \nu.$$

2.8. **Proof of Proposition 2.4.** Fix $z \in \Gamma$ and put $h(x) = \int_{\Gamma} j_z(x, y) d\nu(y)$. We first show that $h \in \mathcal{D}(\Gamma)$, i.e. need to show that $d_{\vec{v}}h(x)$ exists for each $x \in \Gamma$ and $\vec{v} \in T_x(\Gamma)$. Observe that for such x, \vec{v} have

(10)
$$d_{\vec{v}}h(x) = \lim_{\tau \to 0^+} \int_{\Gamma} \frac{j_z(x + \tau \vec{v}, y) - j_z(x, y))}{\tau} d\nu(y),$$

provided the limit exists.

Let S be a vertex set for Γ and consider τ small enough that $x + \tau \vec{v}$ lies on the edge of $\Gamma \setminus (S \cup \{x, z\})$ in direction of \vec{v} . Let w.l.o.g. $e_{\tau} = (x, x + \tau \vec{v})$ be the open segment contained in that edge. By [BR10, Prop. 3.3(A)] the function $t \to j_z(t, y)$ is continuous in t and affine on edges of $\Gamma \setminus (S \cup \{y, z\})$ (in particular the slope is constant there). So for $y \notin e_{\tau}$ we have $(j_z(x + \tau \vec{v}, y) - j_z(x, y))/\tau = \partial_{x,\vec{v}}j_z(x, y)$. This implies that

(11)
$$\int_{\Gamma} \frac{j_z(x+\tau\vec{v},y)-j_z(x,y))}{\tau} d\nu(y)$$
$$= \int_{\Gamma\setminus e_{\tau}} \partial_{x,\vec{v}} j_z(x,y) d\nu(y) + \int_{e_{\tau}} \frac{j_z(x+\tau\vec{v},y)-j_z(x,y))}{\tau} d\nu(y).$$

If $y \in e_{\tau}$, [BR10, Prop. 3.3(A)] gives $|(j_z(x + \tau \vec{v}, y) - j_z(x, y))/\tau| \leq 1$ as $\rho(x + \tau \vec{v}, x) = \tau$. If $y \notin e_{\tau}$, [BR10, Prop. 3.3(D)] gives $|\partial_{x,\vec{v}}j_z(x, y)| \leq 1$. Hence as $\tau \to 0^+$ the first integral in (11) converges to $\int_{\Gamma} \partial_{x,\vec{v}}j_z(x, y)d\nu(y)$, while the second one is bounded by $|\nu|(e_{\tau})$ and hence converges to 0. Thus the limit in (10) exists and we obtain

(12)
$$d_{\vec{v}}h(x) = \int_{\Gamma} \partial_{x,\vec{v}} j_z(x,y) d\nu(y).$$

Using again that $|\partial_{x,\vec{v}}j_z(x,y)| \leq 1 \ \forall y \in \Gamma$, we at once get $|d_{\vec{v}}h(x)| \leq |\nu|(\Gamma) = M$, which proves ii.).

Now let $\{\nu_n\}$ be any sequence of finite signed Borel measures converging weakly to ν and put $h_n(x) := \int_{\Gamma} j_z(x, y) d\nu_n(y)$. For each x the kernel $F_x(y) = j_z(x, y)$ is continuous in y, nonnegative and bounded by [BR10, Prop. 3.3(A)], so $\{h_n\}$ converges pointwise to h just by definition of weak convergence in Reminder 2.1 i.). Also by [BR10, Prop. 3.3(A)] we have $|j_z(x_1, y) - j_z(x_2, y)| \leq \rho(x_1, x_2) \forall x_1, x_2 \in$ Γ , so if there is bound B such that $|\nu_n|(\Gamma) \leq B$ for all n, we obtain

$$|h_n(x_1) - h_n(x_2)| \stackrel{2.1 \text{ iii.})}{\leq} \int_{\Gamma} |j_z(x_1, y) - j_z(x_2, y)| \, d \, |\nu|(y) \leq B \cdot \rho(x_1, x_2),$$

and the functions h_n are all bounded by the same Lipschitz constant. As Γ is compact, by standard calculus the convergence of $\{h_n\}$ to h is uniform, which shows iii.).

For part iv.) assume that $\{\nu_n\}$ converges moderately well to ν . Let $x \in \Gamma$ and $\vec{v} \in T_x(\Gamma)$; we need to show

$$\lim_{n \to \infty} d_{\vec{v}} h_n(x) = d_{\vec{v}} h(x),$$

or equivalently using (12),

(13)
$$\lim_{n \to \infty} \int_{\Gamma} \partial_{x,\vec{v}} j_z(x,y) d\nu_n(y) = \int_{\Gamma} \partial_{x,\vec{v}} j_z(x,y) d\nu(y).$$

We don't give a full proof, just a short note: The difficulty is that $\partial_{x,\vec{v}}j_z(x,y)$ need not be continuous and ν and ν_n might have point masses. However the conditions of moderately well convergence allow us to construct appropriate step functions to show (13). For full details see [BR10, Section 3.6, pp.65-66].

It remains to show part i.). By Remark 2.3 iii.) we can choose sequence of discrete signed measures $\{\nu_n\}$ converging moderately well to ν . Use notation of h_n as above. By definition of m_{h_n} and m_h as in (2) and by (9) we see that each $S \in \mathcal{A}$ satisfies

$$\lim_{n \to \infty} m_{h_n}(S) = m_h(S).$$

For $n \in \mathbb{N}$ denote $\nu_n = \sum_{i \in \mathbb{N}} \lambda_{i,n} \delta_{c_{i,n}}$ for $\lambda_{i,n} \in \mathbb{R}, c_{i,n} \in \Gamma$. Then
 $h_n(x) = \int_{\Gamma} j_z(x, y) d\nu_n(y) = \sum_{i \in \mathbb{N}} \lambda_{i_n} j_z(x, c_{i,n})$

and hence

$$\Delta(h_n) = \sum_{i \in \mathbb{N}} \lambda_{i,n} (\delta_{c_{i,n}} - \delta_z)$$
$$= \sum_{i \in \mathbb{N}} \lambda_{i,n} \delta_{c_{i,n}} - \delta_z \sum_{i \in \mathbb{N}} \lambda_{i,n}$$
$$= \nu_n - \nu_n(\Gamma) \cdot \delta_z.$$

So $m_{h_n}(S) = \Delta(h_n)(S) = \nu_n(S) - \nu_n(\Gamma)\delta_z(S) \ \forall S \in \mathcal{A}$. Passing to $n \to \infty$ yields $m_h(S) = \nu(S) - \nu(\Gamma)\delta_z(S)$. For countable family $\{S_i\}$ of disjoint sets in \mathcal{A} it follows then that

$$\sum_{i\in\mathbb{N}} |m_h(S_i)| \le 2 |\nu|(\Gamma),$$

so indeed $h \in BDV(\Gamma)$.

The signed measure $\Delta(h) = m_h^*$ attached to h is determined by its values on sets in \mathcal{A} , hence it must coincide with $\nu - \nu(\Gamma)\delta_z$. This finishes the proof. \Box

References

[BR10] M. Baker and R. Rumely. Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, 159. American Mathematical Society, Providence, RI, 2010.